Thèse présentée Devant l'université de Rennes 1 **UFR SPM** pour obtenir le grade de **Docteur de l'Université de Rennes 1** Mention **PHYSIQUE**

Par Arnaud Le Padellec

Sujet de la thèse

"Etude de la recombinaison dissociative par les méthodes des faisceaux confluents et des post-décharges en écoulement avec sonde de Langmuir et spectromètre de masse"

Sommaire

CHAPITRE I : INTRODUCTION GENERALE	p. 2
CHAPITRE II : THEORIE	p. 14
• CHAPITRE III : TECHNIQUES ET DONNEES EXPERIMENTALES	p. 30
CHAPITRE IV : MERGED BEAMS	p. 62
• CHAPITRE V : FALP-MS	p. 84
• CHAPITRE VI : RD DE KrH ⁺ , XeH ⁺ ET H_3^+	p. 107
• CHAPITRE VII : RD DE CO^+ , HCO^+ , CN^+ ET HCN^+	p. 132
CHAPITRE VIII : CONCLUSION ET PERSPECTIVES	p. 153

CHAPITRE I - INTRODUCTION GENERALE

- I. 1 Astrochimie -Chimie atmosphérique
 - I. 1. 1 Généralités sur le milieu interstellaire
 - 1. 1. 2 Sources d'ionisation des nuages interstellaires
 - I. 1. 3 Classification des nuages
 - 1. 1. 3. a Nuages diffus
 - I. 1. 3. b Nuages denses
 - I. 1. 4 Découverte des molécules complexes Radioastronomie
 - I. 1. 5 Chimie interstellaire
 - I. 1. 5. a Chimie des grains
 - I. 1. 5. b Chimie en phase gazeuse
 - I. 1. 5. b. a Cas des nuages diffus
 - I. 1. 5. b. b Cas des nuages denses
 - I. 1. 5. c Chimie des PAH
 - I. 1. 6 Modélisation des nuages interstellaires
 - I. 1. 7 Exemples de contributions de la Recombinaison Dissociative en chimie interstellaire et en chimie atmosphérique
 - I. 1. 7. a Mesure de l'ionisation dans les nuages denses
 - I. 1. 7. b Chimie des atmosphères planétaires
 - I. 1. 7. b. a Couronne chaude d'oxygène atomique
 - I. 1. 7. b. b Evasion d'azote atomique de l'atmosphère de Mars
 - I. 1. 7. b. c Emission des raies rouge et verte de l'oxygène atomique
 - I. 1. 7. c Rapports de branchement de RD : nuages denses comme milieux test des différentes théories.
- I. 2 Physique moléculaire
 - I. 2. 1 Etats résonants superexcités (ERS)
 - I. 2. 2 Rôle des ERS dans les processus moléculaires
- I. 3 Contenu du mémoire

Depuis quelques années, le Département de Physique Atomique et Moléculaire de Rennes consent un gros effort en astrochimie expérimentale ; cette science est présentée dans le chapitre d'introduction générale. Ce mémoire est consacré à l'étude de la recombinaison dissociative (RD) ; il est donc naturel de souligner son rôle en astrochimie. Nous considérons également la RD sous l'aspect d'un processus résonant qui implique des états superexcités. Ces derniers constituent un extraordinaire champ de recherche en physique moléculaire fondamentale. Enfin, nous présentons le contenu de ce mémoire.

I. 1 - Astrochimie - Chimie atmosphérique

I. 1. 1 Généralités sur le milieu interstellaire

Les galaxies sont constituées d'étoiles qui concentrent la majeure partie de la matière (90 %). Le milieu interstellaire, espace entre les étoiles, contient la fraction restante (10 %). Autant la physique nucléaire régit l'évolution des étoiles, autant les physiques atomique et moléculaire régissent celle du milieu interstellaire (conditions physiques radicalement différentes). Cependant, les atomes qui engendrent la chimie interstellaire sont créés au sein des étoiles par fusion thermonucléaire (O, C, N...). Le tableau 1 donne l'abondance relative des principaux éléments contenus dans le milieu interstellaire⁽¹⁾.

Elément Abondance	H 1	He 0,097	${ { 0} \\ { 8,5 } \\ { 4 } } 10^{-}$	$C = 3,6 \ 10^{-4}$	Ne 1,2 10^{-4}	N 1,1 10 ⁻ 4	Mg 3,8 10 ⁻ 5	Si 3,6 10 ⁻ 5	Fe 3,2 10 ⁻ 5
Elément Abondance	S 1,8 10 ⁻ 5	Ar $3,6 10^{-6}$	Al 3,0 10^{-6}	Ca 2,2 10^{-6}	Na 2,1 10^{-10}	Ni 1,8 10 ⁻ 6	Cr 4,8 10 ⁻ 7	P $3,7 10^{-7}$	Mn 3,4 10^{-7}

Tableau 1 : Abondance des principaux éléments

Les nuages interstellaires se caractérisent principalement par ⁽²⁾ :

- une faible densité $n_{H} \sim 10 10^{5} \text{ cm}^{-3}$
- une faible température $T \sim 10 100^{\circ} K$
- des conditions éloignées de l'équilibre thermodynamique
- une faible ionisation fractionnaire x_e

• la présence de grains et de PAH ; ces derniers sont des structures à base de noyaux benzéniques.

Avant de caractériser les différents types de nuages interstellaires, il nous semble opportun d'indiquer les sources d'ionisation de ces nuages.

I. 1. 2 Sources d'ionisation des nuages interstellaires

L'ionisation fractionnaire $x_e = \frac{n_e}{n_H}$ se situe entre 10⁻⁸ et 10⁻⁴, respectivement pour les

nuages denses et les nuages diffus. Elle est engendrée et maintenue par :

• les rayons cosmiques qui constituent la principale source d'ionisation des nuages interstellaires. Leur très grande énergie leur permet d'ioniser l'hydrogène moléculaire dans les nuages denses suivant :

$$H_2 + rc \rightarrow H_2^+ + e + rc \qquad (I. 1)$$

• les photons UV qui constituent une source d'ionisation spécifique des nuages diffus. Toute espèce neutre, dont le potentiel d'ionisation est inférieur à celui de l'hydrogène atomique (n=1), est photoionisée. C'est le cas du carbone (PI = 11,26 eV), du soufre (PI = 10,36 eV) et du silicium (PI = 8,15 eV). La photoionisation de certaines molécules est également possible (CH, C₂...). • les ondes de chocs qui provoquent une ionisation locale du milieu interstellaire.

L'efficacité des transferts de charges sur les métaux⁽³⁾est un paramètre fondamental pour le maintien de l'ionisation :

- s'ils sont efficaces, l'ionisation du milieu est maintenue car les ions métalliques ne se recombinent pas avec les électrons.

- s'ils sont inefficaces, l'ionisation est en partie détruite car les transferts de charges se font alors sur d'autres molécules. Les ions moléculaires ainsi produits, se recombinent efficacement avec les électrons.

I. 1. 3 Classification des nuages

I. 1. 3. a Nuages diffus

Ils sont caractérisés par de très faibles densités $10 - 10^3$ cm⁻³ et des températures comprises entre 30 et 100° K. Ce type de nuages est transparent au rayonnement UV, ce qui a pour effet d'y inhiber la chimie.

I. 1. 3. b Nuages denses

Les densités sont plus importantes que dans les nuages diffus : 10^4 à 10^5 cm⁻³. En revanche, la température y est plus basse (une dizaine de °K). Comme les nuages denses sont opaques au rayonnement UV (rôle des grains), une chimie relativement complexe peut se développer. En outre, l'effondrement gravitationnel local des nuages denses engendre les étoiles.

I. 1. 4 Découverte des molécules complexes - Radioastronomie

L'étude spectroscopique des nuages, en émission et en absorption, a permis de mettre en évidence une chimie interstellaire complexe. Dès 1937, des systèmes diatomiques tels que $CH^{(4-6)}$, CH^{+} ⁽⁷⁾ et $CN^{(8)}$ ont été détectés, et à ce jour, plus d'une centaine d'espèces moléculaires ont été répertoriées dans les nuages denses (radioastronomie : tableau 2).

Des transitions entre niveaux rotationnels⁽⁹⁾ induisent une émission dans le domaine millimétrique et submillimétrique ; cette émission a permis la découverte de molécules contenant jusqu'à treize atomes. Les molécules émettrices, dont l'excitation rotationnelle est maintenue par les collisions, possèdent toutes un fort moment dipolaire permanent.

Une importante émission infrarouge est également détectée ; elle est communément attribuée aux PAH. Ces derniers sont excités par les photons UV et leur énergie d'excitation est ensuite redistribuée vers les niveaux vibrationnels. Une autre partie de l'émission provient de la fluorescence⁽¹⁰⁾.

Enfin quelques deux cents bandes diffuses en absorption ont été répertoriées⁽¹¹⁻¹²⁾ dans le domaine visible. A ce stade de la discussion, il est nécessaire d'évoquer les différents processus intervenant dans la chimie interstellaire.

I. 1. 5 Chimie interstellaire

I. 1. 5. a Chimie des grains

Un pour cent de la masse interstellaire est constituée de grains ; leur rôle est de catalyser la synthèse de certaines molécules. Ces grains, probablement recouverts d'une pellicule de glace, sont composés de graphite et de silicates ; leur diamètre est compris entre 0,01 et $10\mu m$.

La chimie des grains procède en trois étapes⁽¹³⁾ :

- adsorption des atomes sur les grains
- migration et association de ces atomes sur la surface
- désorption de la molécule lorsque l'énergie de libération est suffisante.

Leur contribution à la synthèse de l'hydrogène moléculaire est majeure :

$$H + H + \text{grain} \rightarrow H_2 + \text{grain} + 4,48\text{eV}$$
 (I. 2)

Il est probable qu'ils puissent également servir de support à la chimie entre radicaux et atomes d'hydrogène⁽¹⁴⁾. L'excès d'énergie des radicaux est alors converti en excitation des modes de vibration de la surface (phonons). A la périphérie des nuages denses, la photodésorption UV des molécules ainsi synthétisées, serait possible.

I. 1. 5. b Chimie en phase gazeuse

Les conditions extrêmes dans les nuages interstellaires font que le nombre de processus efficaces est drastiquement limité. Les réactions doivent être binaires et sans barrière d'activation. A part quelques réactions entre radicaux, la majorité des réactions neutre-neutre présentent une barrière d'activation et sont donc exclues de la présente chimie. En revanche, les réactions ion-molécule ainsi que la recombinaison dissociative sont des processus exothermiques. Quelque soit le nuage, la synthèse des neutres polyatomiques se conforme au cycle suivant :

- réaction Ion- Molécule (normale (AN) et/ou radiative (AR)) (étape finale de synthèse des neutres)
- recombinaison dissociative

Suivant le type de nuage, la chimie est différente.

I. 1. 5. b. a Cas des nuages diffus

La chimie du carbone est préférentiellement présentée, car des trois éléments mentionnés plus haut comme photoionisables, le carbone est le plus abondant. La chimie débute par :

$C^+ + H_2 \rightarrow CH_2^+ + hv$	(AR)	(I. 3)
$\mathrm{CH}_2^+ + \mathrm{H}_2 \rightarrow \mathrm{CH}_3^+ + \mathrm{H}$	(AN)	(I. 4)
$CH_2^+ + e \rightarrow fragments$	(RD)	(I. 5)
$CH_3^+ + e \rightarrow fragments$	(RD)	(I. 6)

suivies par :

La complexité est inhibée par le rayonnement UV qui dissocie les espèces les plus fragiles.

I. 1. 5. b. b Cas des nuages denses

L'hydrogène moléculaire est synthétisé par la chimie des grains ; il est ensuite ionisé par les rayons cosmiques pour donner H_2^+ . Une chimie complexe s'ensuit :

	$\mathrm{H_2^+} + \mathrm{H_2} \rightarrow \mathrm{H_3^+} + \mathrm{H}$	(AN)	(I. 7)
	$H_3^+ + X \rightarrow XH^+ + H_2$	(Transfert de proton)	(I. 8)
et/ou	$H_3^+ + e \rightarrow fragments$	(RD)	(I. 9)

La réaction (I. 8) de transfert protonique est un processus efficace car l'affinité protonique de X est généralement supérieure à celle de H₂.

Compte tenu des conditions physiques à l'intérieur des nuages denses, l'état vibrationnel des ions H_3^+ est le fondamental. Aussi la vitesse de Recombinaison Dissociative de $H_2^+(v=0)$ est-elle une donnée capitale dont dépend la complexité de la chimie que nous décrivons. Un débat très controversé a lieu depuis quelques années sur la valeur de cette vitesse. Soit la RD de H_3^+ est rapide et la chimie se limite aux réactions déjà mentionnées, soit elle est plus lente et les réactions suivantes peuvent avoir lieu :

$$XH^{+} + H_{2} \rightarrow XH_{2}^{+} + H \qquad (AN) \qquad (I. 10)$$

$$XH^+ + H_2 \rightarrow XH_3^+ + h\upsilon$$
 (AR) (I. 11)

Molécules à deux atomes							
H ₂	HD	D_2	СН	CH^{+}	CN	СО	CS
C ₂	OH	O_2	NH	NO	NS	SO	\mathbf{SO}^+
SiS	SiO	SiN	PN	HCl	СР	SiC	NaCl
AlCl	AlF	KCl	N_2	CO^+			
Molécules	à trois ator	mes					
H_2D^+	H_2O	НСО	HCO^+	HOC^+	HCN	HNC	HNO
HCS^+	H_2S	C ₃	C_2H	C_2O	C_2S	OCS	N_2H^+
SO_2	SiH ₂	SiC_2	MgNC	CO ₂	CH ₂	NH_2	NaCN
N ₂ O	H_2O^+						
Molécules	à quatre at	tomes					
HC ₂ N	$\mathrm{HCNH}^{\scriptscriptstyle +}$	HNCS	HOCO^+	HNCO	H ₂ CO	H_2CS	H_3O^+
C_2H_2	C_3H	C ₃ O	C_3N	C_3S	NH ₃	H_2CN	
Molécules	à cinq ator	nes					
НСООН	HCCNC	HNC ₃	HC ₃ N	H_2C_3	CH ₂ CO	CH ₂ CN	CH ₂ NH
CH_4	C_3H_2	C_4H	C ₅	NH ₂ CH	NH ₂ CN	SiH_4	SiC_4
H_2COH^+							
Molécules	à six atom	es					
HC ₃ HO	H_2C_4	CH ₃ CN	CH ₃ NC	C_2H_4	CH ₃ OH	CH_3SH	C ₅ H
C ₅ O	NH ₂ CHO	$\mathrm{HC}_3\mathrm{NH}^+$					
Molécules	à sept aton	nes					
HC_5N	CH ₂ CHCN	CH ₃ CHO	CH_3C_2H	CH ₃ NH ₂	C_6H		
Molécules à huit atomes							
HCO ₂ CH ₃	CH ₃ C ₃ N						
Molécules à neuf atomes							
HC ₇ N	CH ₃ CH ₂ CN	(CH ₃) ₂ O	CH ₃ CH ₂ OH	CH_3C_4H	C_8H^+		
Molécules	<u>Molécules à dix atomes</u>						
CH ₃ COCH ₃ H ₃ C ₆ N							
Molécules à onze atomes							
HC ₉ N							

Tableau 2 : Liste des molécules détectées dans le milieu interstellaire

La complexité est toutefois limitée par la saturation des ions XH_n^+ en atomes d'hydrogène. Elle l'est également par la RD de ces mêmes ions dont les rapports de branchement sont pour la plupart inconnus.

I. 1. 5. c Chimie des PAH

Bien que les mécanismes de formation des PAH ne soient pas clairement définis, leurs lieux de production sont probablement les environnements circumstellaires froids. Ils sont présents dans les deux types de nuages interstellaires mais y ont des comportements différents⁽¹⁵⁾. Ainsi dans les nuages diffus, ils peuvent être simplement ou doublement ionisés par les photons UV ; les recombinaisons qui s'en suivent sont, soit radiatives, soit dissociatives. Ils peuvent être également fragmentés de certains de leurs atomes d'hydrogène. Dans les nuages denses, il n'est pas exclu que l'attachement électronique des PAH, initialement neutres, puisse être efficace.

I. 1. 6 Modélisation des nuages interstellaires

Le but des modèles est de rendre compte de l'abondance des différentes molécules observées dans les nuages interstellaires. Les concentrations n de ces molécules sont dépendantes du temps ; les équations différentielles auxquelles elles obéissent s'écrivent explicitement à l'aide de termes de production et de destruction. La résolution de ces équations différentielles couplées est chose difficile ; ceci explique que les modèles, dont la sophistication

va croissante, relèvent tous de deux approches différentes.

- Modèles stationnaires

L'hypothèse consiste à appliquer à chaque espèce considérée dans le nuage, la contrainte $\frac{dn}{dt} = 0$; la résolution des équations cinétiques en est grandement simplifiée. Un tel

modèle (Herbst et Klemperer⁽¹⁶⁾) décrivait, dès 1973, le comportement de 35 atomes et molécules couplés par une centaine de réactions chimiques.

- Modèles à évolution temporelle

Ils sont beaucoup plus sophistiqués que les précédents. La chimie évolue à partir des concentrations initiales des différentes espèces chimiques considérées dans le nuage. Les autres paramètres sont gardés constants (température, pression, intensité radiative, densité...). Prasad et Huntress⁽¹⁷⁾ ont été les pionniers de ce type d'approche, avec un modèle comportant 137 espèces chimiques couplées par 1423 réactions. Il a été montré que la composition chimique du nuage tend vers un état stationnaire en un temps caractéristique de 10⁷ ans.

Tous ces modèles requièrent de nombreuses vitesses de réactions ion-molécule et de recombinaison dissociative ainsi que les rapports de branchement.

Nous recentrons dorénavant l'exposé sur la contribution de la recombinaison dissociative à la chimie interstellaire et à la chimie atmosphérique. Le besoin des probabilités de recombinaison et des rapports de branchement y est d'égale importance. Il est à déplorer une très nette dissymétrie du nombre d'études expérimentales au détriment des rapports de branchement. Pour illustrer le rôle de la vitesse de RD de $H_3^+(v=0)$, nous présentons une technique de mesure de l'ionisation des nuages denses. Nous interprétons ensuite trois phénomènes atmosphériques en termes de recombinaison dissociative. Enfin nous assimilons le milieu interstellaire à un laboratoire pour y tester certaines conceptions théoriques concernant les rapports de branchement.

<u>I. 1. 7 Exemples de contributions de la recombinaison dissociative en chimie interstellaire et en chimie atmosphérique</u>

I. 1. 7. a Mesure de l'ionisation dans les nuages denses⁽¹⁸⁾

Dans les nuages denses, l'ionisation fractionnaire x_e est fonction du taux d'ionisation par les rayons cosmigues ainsi que de l'efficacité des transferts de charges sur les métaux. L'effondrement gravitationnel des nuages denses (naissance des étoiles) est intimement corrélé à la présence de champs magnétiques qui sont eux-mêmes liés à l'ionisation fractionnaire. La mesure de cette dernière est basée sur le fractionnement du deutérium suivant :

$$HD + H_3^+ \xrightarrow{k} H_2D^+ + H_2 \qquad (I. 12)$$

Cette réaction k est particulièrement efficace à basse température tandis que la réaction inverse est très inhibée. Des deux rapports isotopiques $\frac{[H_2D^+]}{[H_3^+]}$ et $\frac{[DCO^+]}{[HCO^+]}$, le premier est

difficile à mesurer ; ils sont néanmoins liés entre eux par la relation :

$$\frac{[\text{DCO}^+]}{[\text{HCO}^+]} = \frac{1}{3} \frac{[\text{H}_2\text{D}^+]}{[\text{H}_3^+]} = \frac{1}{6} \frac{[\text{HD}]}{[\text{H}_2]} \frac{k}{\alpha_{(\text{H}_3^+(\text{v}=0))} x_e}$$
(I. 13)

Le rapport isotopique $\frac{[HD]}{[H_2]}$ ainsi que la vitesse k de fractionnement sont connus. La mesure

de l'ionisation fractionnaire xe est donc conditionnée par la connaissance de la vitesse de RD de $H_{3}^{+}(v = 0)$.

I. 1. 7. b Chimie des atmosphères planétaires⁽¹⁹⁾

L'énergie de dissociation des molécules atmosphériques est sensiblement égale à leur potentiel d'ionisation (PI). De ce fait, le sort des ions dans les atmosphères planétaires dépend principalement du PI de leur molécule parente. Les réactions ion-molécule détruisent l'ion réactif de telle sorte que la molécule parente de l'ion produit ait un PI inférieur à la molécule parente de l'ion réactif. Ces réactions sont donc très efficaces pour des ions aux molécules parentes à fort PI, dans la mesure où les concentrations en molécules réactives sont suffisantes.

Si cette dernière condition n'est pas remplie, la recombinaison dissociative domine ; c'est le cas à haute altitude où les concentrations vont décroissantes.

La RD présente une forte exothermicité qui est répartie entre ses fragments neutres. Le comportement de ces derniers donne lieu à différents phénomènes atmosphériques.

<u>I. 1. 7. b. a Couronne chaude d'oxygène atomique</u> Ce type de couronne existe dans les atmosphères de Vénus⁽²⁰⁾, de la Terre⁽²¹⁾ et de Mars⁽²²⁾. La RD de O_2^+ procède suivant cinq canaux :

$$O_2^+ + e \rightarrow O(^{3}P) + O(^{3}P) + 6,98eV$$
 (I. 14)

$$\rightarrow O(^{3}P) + O(^{1}D) + 5,02eV$$
 (I. 15)
$$\rightarrow O(^{3}P) + O(^{1}S) + 2.79eV$$
 (I. 16)

$$\rightarrow O(^{\circ}P) + O(^{\circ}S) + 2,79eV \qquad (1.16)$$

$$\rightarrow O(D) + O(D) + 3,05eV$$
 (I. 17)

$$\rightarrow O(^{1}D) + O(^{1}S) + 0.83eV$$
 (I. 18)

Les atomes d'oxygène sont, soit dans leur état électronique fondamental (³P), soit dans un état excité (¹S ou ¹D). En revanche, ils sont tous dotés d'une énergie cinétique.

L'exobase est conventionnellement la frontière de l'atmosphère qui délimite la région des collisions de celle qui en est exempte. En dessous de l'exobase, les atomes d'oxygène se thermalisent avec le gaz environnant et contribuent ainsi à son réchauffement. Certains canaux de réactions contribuent plus que d'autres au phénomène, aussi est-il capital de déterminer leur rapport de branchement ainsi que la vitesse globale de RD de O_2^+ .

 $\begin{array}{c} \underline{I.\ 1.\ 7.\ b.\ b} \ Evasion\ d'azote\ atomique\ de\ l'atmosphère\ de\ Mars}\\ Le\ processus\ impliqué\ est\ la\ RD^{(23)}\ de\ N_2^+\ et\ parmi\ tous\ les\ canaux\ exothermiques, seul \\ \end{array}$

le canal

$$N_2^+(v=0) + e \rightarrow N(^4S) + N(^2D) + 3,45eV$$
 (I. 19)

a un rapport de branchement suffisant, et peut fournir l'énergie cinétique suffisante aux atomes d'azote, pour s'échapper du champ de gravitation de Mars. La connaissance du rapport de branchement de ce canal ainsi que la vitesse globale de RD de N_2^+ sont nécessaires.

L'évasion d'atomes de carbone et d'oxygène, produits de la recombinaison dissociative de CO^+ et O_2^+ , est observée dans une moindre mesure.

Etant lié au champ de gravitation de la planète, l'évasion n'est possible que sur Mars lorsqu'au dessus de l'exobase, la vitesse des atomes d'azote est supérieure à la vitesse de

libération. Sur Mars, le rapport isotopique $\frac{{}^{15}N}{{}^{14}N}$ est très supérieur à celui mesuré sur Terre⁽²⁴⁾;

l'évasion préférentielle du ¹⁴N en constitue la justification. Enfin, il est important de signaler que l'effet isotopique disparaît avec l'excitation vibrationnelle de N_2^+ (augmentation de l'exothermicité de la RD).

I. 1. 7. b. c Emission des raies rouge et verte de l'oxygène atomique⁽²⁵⁾

Ces raies sont détectées dans l'atmosphère terrestre ainsi que dans celle de la face cachée de Vénus. Elles sont induites par les transitions $O({}^{1}D) \rightarrow O({}^{3}P)$ et $O({}^{1}S) \rightarrow O({}^{1}D)$, respectivement à 630 nm (rouge) et 557,7 nm (verte). Les états électroniques excités ${}^{1}D$ et ${}^{1}S$ ne peuvent être produits que par la RD de O_{2}^{+} suivant les canaux (I. 15, 17, 18) et (I. 16, 18). L'intensité de la raie verte est donnée par le rendement quantique de production de l'état ${}^{1}S$ qui est très sensible à l'état vibrationnel de l'ion O_{2}^{+} .

<u>I. 1. 7. c</u> Rapports de branchement de RD : nuages denses comme milieux test des différentes théories⁽²⁶⁾

Les rapports de branchement sont tout aussi vitaux pour la modélisation des milieux interstellaires que les vitesses de recombinaison dissociative. Bien que la majeure partie des études expérimentales aient été focalisées sur les probabilités de réaction, quelques conceptions théoriques existent sur les rapports de branchement. Rappelons brièvement leurs principaux résultats :

Modèle statistique⁽²⁷⁾ (Herbst 1978)

Aux canaux les plus énergétiques correspondent les rapports de branchement les plus forts. La rupture d'une simple liaison est plus favorable que celle d'une liaison double ou triple. Ce modèle est le plus simple.

Approche dissociative/prédissociative⁽²⁸⁾ (Green et Herbst 1979)

Une liaison atome lourd-atome d'hydrogène est plus facilement détruite qu'une liaison atome lourd -atome lourd (rapport de masse). Le nombre d'atomes d'hydrogène fragmentés n'est pas limité. Cette approche est généralement utilisée dans la modélisation des nuages interstellaires.

Théorie de Bates⁽²⁹⁾

La charge de l'ion moléculaire est localisée sur l'atome d'hydrogène. La recombinaison rend antiliante la liaison de cet atome et provoque sa fragmentation suivant :

$$AH_{n+1}^{+} + e \rightarrow AH_{n} + H$$
 (I. 20)

La fragmentation de deux atomes ou d'une molécule d'hydrogène n'est pas permise. Les nuages denses, de part leur complexité chimique, peuvent apporter quelques éléments au débat et aider à départager les trois conceptions présentées ci-dessus. A cet égard, le système $(H_3C_2O^++e)$ présente un grand intérêt⁽¹⁸⁾. A priori, sa recombinaison dissociative peut donner lieu à de multiples canaux tels :

$$\begin{array}{ll} H_{3}C_{2}O^{+}+e & \rightarrow H_{2}C_{2}O+H \quad (radical \ Ketene) & (I. \ 21) \\ & \rightarrow HC_{2}O+H_{2} \quad (radical \ Ketyl) & (I. \ 22) \\ & \rightarrow \dots \end{array}$$

Le fait que le radical Kétyl, à l'inverse du radical Ketene, n'ait pas été détecté dans les nuages denses tendrait à donner raison à la théorie de Bates. Il convient cependant de rester prudent vu le nombre d'incertitudes qui demeurent.

I. 2 Physique moléculaire

I. 2. 1 Etats résonants superexcités (ERS)

Dès 1962, Platzman⁽³⁰⁾ a montré l'existence d'états résonants superexcités dont la principale caractéristique est la grande instabilité. Bien que leur énergie interne (électronique et rovibrationnelle) soit supérieure au premier potentiel d'ionisation, l'autoionisation n'est pas le seul mode possible de stabilisation ; la dissociation l'est également.

I. 2. 2 Rôle des ERS dans les processus moléculaires

Les états superexcités AB ^{**} interviennent dans beaucoup de processus⁽³¹⁾ ; ce sont des états intermédiaires résonants :

$AB + h\upsilon \rightarrow AB^{**}$	$\rightarrow A + B$	Photodissociation	(I.23)
	$\rightarrow AB^{+} + e$	Photoionisation	(I.24)
	\rightarrow BA	Photoisomérisation	(I.25)
$AB^+ + e \rightarrow AB^{**}$	$\rightarrow AB^{+} + e$	Diffusion élastique	(I.26)
	$\rightarrow AB^{+'} + e$	Excitation	(I.27)
	$\rightarrow A^{+} + B + e$	Excitation Dissociative	(I.28)
	$\rightarrow A^* + B$	Recombinaison Dissociative	(I.29)
	$\rightarrow A^{+} + B^{-}$	Formation de paires d'ions	(I.30)
$A^* + B \rightarrow AB^{**}$	$\rightarrow AB^{+} + e$	Ionisation associative	(I.31)
	$\rightarrow A + B^+ + e$	Ionisation Penning	(I.32)
$A^{+} + B^{-} + C \rightarrow AB^{**} + C$	\rightarrow A + B + C	Recombinaison termoléculai	re(I.33)
		Ion-Ion	

Parmi tous les processus moléculaires cités, la recombinaison dissociative est probablement la plus étudiée avec la photodissociation et l'ionisation Penning. L'étude de la RD permet donc un approfondissement de nos connaissances sur les états superexcités et vice-versa.

I. 3 Contenu du mémoire

L'astrochimie et la physique moléculaire ont été choisies pour mettre en évidence l'importance de la recombinaison dissociative (RD). Cette dernière intervient également dans d'autres domaines tel que la physique des plasmas.

Dans le prochain chapitre (Chapitre II), un aperçu théorique de la RD sera proposé. Nous y distinguerons les processus qui impliquent un croisement des courbes d'énergie potentielle, de ceux qui ne l'impliquent pas. Nous souhaiterions montrer que de nombreux problèmes théoriques restent ouverts, en particulier ceux qui concernent H_3^+ .

Le chapitre III a pour but de situer dans un contexte expérimental élargi, les deux techniques expérimentales utilisées dans ce mémoire. Nous insisterons en particulier sur une technique très prometteuse dite des «anneaux de stockage». Nous proposerons également une synthèse de données expérimentales engrangées par les différentes techniques.

Les chapitres IV et V seront consacrés à une étude détaillée des deux montages expérimentaux utilisés : le Merged Beams (Faisceaux confluents) et le FALP-MS (Post Décharge en Ecoulement avec Sonde de Langmuir et Spectromètre de masse).

Dans les deux chapitres suivants, les résultats expérimentaux seront présentés. Le chapitre VI abordera plus particulièrement la controverse sur la RD de $H_3^+(v = 0)$ dont nous avons montré l'importance en astrochimie. Y seront également présentés des résultats concernant la RD de XeH⁺ et de KrH⁺. Le chapitre VII traitera de la RD de CO⁺, HCO⁺, CN⁺ et HCN⁺; l'étude de ces deux derniers systèmes est inédite.

Enfin le chapitre de conclusion (Chapitre XIII) donnera l'occasion de présenter les perspectives scientifiques du sujet.

<u>Bibliographie</u>

(1) E. Anders and N. Grevesse	Geochimica and Cosmochimica Acta, 53, 197, (1989).
(2) J. H. Black and E. F. Dishoeck	" Dissociative Recombinaison : Theory, Experiment and
	applications " p. 317
(Editors J. B.	A. Mitchell and S. L. Guberman, Singapore, 1989).
(3) B. Turner and L. M. Ziurys	" Galactic and Extragalactic Radio Astronomy "
(Editors G. L.	Verschuur and K. I. Kellerman)
(Springer - Ve	erlag, Berlin, 1988).
(4) T. Dunham	Pub. Astro. Soc. Pacific, <u>49</u> , 26, (1937).
(5) P. Swings and L. Rosenfeld	Astrophys. J., <u>86</u> , 483, (1937).
(6) A. McKellar	Pub. Dom. Astrophys. Obs., <u>7</u> , 251, (1941).
(7) A. E. Douglas and G. Herzberg	Astrophys. J., <u>94</u> , 381, (1941).
(8) W. S Adams and F. H. Seares	Ann. Rep. Mount Wilson Observatory, 23, (1938-1939).
(9) G. Winnewisser and E. Herbst	Rep. Prog. Phys., <u>56</u> , 1209, (1993).
(10) A. G. G. M. Tielens	" Dust and Chemistry in Astronomy " p. 103
(Editors T. J.	Millar and D. A. Williams) (IOP, Bristol, 1993).
(11) F. Salama and L. J. Allamandol	la Astrophys. J. <u>, 395</u> , 301, (1992).
(12) F. Salama and L. J. Allamandol	la J. Chem. Soc. Faraday Trans., <u>89</u> , 2277, (1993)
(13) D. A. Williams	Astrophys. J., <u>151</u> , 935, (1968).
(14) E. F. Van Dishoeck and J. H. B	lack "Rate coefficients in Astrochemistry " p. 209
(Editors T. J.)	Millar and D. A. Williams) (Kluwer, Dordrecht, 1988).
(15) T. J. Millar, E. Roueff, S. B. Cl	harnley and S. D. Rodgers
	Int. J. Mass. Spectrom. Ion. Proc., <u>149-150</u> , 389, (1995).
(16) E. Herbst and W. Klemperer	Astrophys. J., <u>185</u> , 505, (1973).
(17) S. S. Prasad and W. T. Huntres	s Ap. J. Suppl. Ser., <u>43</u> , 1, (1980).
(18) B. E. Turner	"Dissociative Recombinaison : Theory, Experiment and
	applications " p. 329
(Editors J. B.	A. Mitchell and S. L. Guberman, Singapore, 1989).
(19) J. L Fox	« Dissociative Recombination : Theory, Experiment and
(Editors D. D.	applications « p. 219
(Editors B. K.)	Kowe, J. B. A. Milchell and A. Canosa, <u>515</u> , (1995).
(20) A. F. Nagy, T. E. Cravells, J. H	Cooph Dog Lott $2,620$ (1021)
(21) I. H. Vas and D. D. Have	Geophic Res. Lett., $\underline{\delta}$, 629, (1981).
(21) J. H. Yee and P. B. Hays	J. Geophys. Res., $\underline{83}$, 1795, (1980).
(22) A. F. Nagy and T. E. Cravens	Geoph. Res. Lett., 15 , 433, (1988).
(23) M. K. Wallis	Planet. Space Sci., <u>26</u> , 949, (1978).
(24) A. O. Nier and M. B. McElroy	Science, <u>194</u> , 1298, (1976).
(25) J. L Fox	¹ Dissociative Recombination : Theory, Experiment and
	applications ^a p. 264
(Editors J. B.	A. Mitchell and S. L. Guberman, Singapore, 1989).
(26) E. Herbst	"Dissociative Recombination : Theory, Experiment and
	applications " p. 303
(Editors J. B.	A. Mitchell and S. L Guberman, Singapore, 1989).
(27) E. Herbst	Astrophys. J., <u>222</u> , 508, (1978).
(28) S. Green and E. Herbst	Astrophys. J., <u>729</u> , 121, (1979).
(29) D. K. Bates	Astrophys. J. Lett., <u>306</u> , L45, (1986).
(30) R. L. Platzman	Radiat. Res., <u>17</u> , 419, (1962).
(31) H. Nakamura	J. Chin. Chem. Soc. , <u>42</u> , 359, (1995).

CHAPITRE II - THEORIE

- II.1 -Introduction
- II.2 -Caractérisation d'un système moléculaire polyélectronique
 - II.2.1 Configuration électronique
 - II.2.2 Etat électronique
- II. 3 -Equation de Schrödinger Courbes et surfaces d'énergie potentielle
 - II.3.1 Résolution de l'équation de Schrödinger
 - II.3.2 Etats stationnaires ou adiabatiques
 - II.3.3 Etats quasistationnaires ou diabatiques
- II. 4 -Recombinaison Dissociative AVEC CROISEMENT des courbes d'énergie potentielle
 - II.4.1 Mécanisme direct de RD (Bates 1947)
 - II.4.1.a Description du mécanisme
 - II.4.1.b Section efficace $\sigma_{RDDirect}(E_{cm})$
 - II. 4. 2 Mécanisme indirect de RD (Chen & Mittelman 1967 Bardsley 1968)
 - II.4.2.a Description du mécanisme
 - II.4.2.b Section efficace $\sigma_{RDIndirect}(E_{cm})$
 - II.4.3 Mécanisme "Full Direct" de RD (O' Malley 1989)
 - II.4.4 Super RD de clusters et d'ions diatomiques de gaz rares (Bates 1991)
 - II.4.5 Effets des degrés de liberté de vibration et de rotation
- II. 5 -Recombinaison Dissociative SANS CROISEMENT des courbes d'énergie potentielle
 - II.5.1 Mécanisme "Multisteps" (Bates 1993)
 - II . 5 . 2 RD par couplage de l' OPERATEUR ENERGIE CINETIQUE DES NOYAUX (Guberman 1994)
 - II.5.3 Super RD d'ions à "Pont hydrogène" (Bates 1991)
- II. 6 -Traitement théorique de la recombinaison dissociative
 - II.. 6 .1 Mélange de configurations Théorie de la diffusion résonante
 - II.6.1.a Cas de l'autoionisation
 - II.6.1.b Cas de la prédissociation
 - II.6.2 MQDT
 - II.6.2.a Canaux de réaction
 - II.6.2.b Interactions entre courte et longue portées
 - II.6.3 Comparaison entre les deux théories
- II.7 -Conclusion

II.1 -Introduction

Ce chapitre est dédié à un aperçu théorique de la recombinaison dissociative (notée RD). Pour un ion diatomique, elle peut être symbolisée par :

$$AB^+ + e \rightarrow AB^{**} \rightarrow A + B$$
 (II.1)

La stabilisation du complexe moléculaire AB** est dissociative ; l'excès d'énergie du complexe est évacué sous forme d'énergie cinétique ou interne des fragments atomiques A et B. Avant la description des différents mécanismes de RD, il nous a semblé opportun de redéfinir les notions de configuration et d'état électronique ainsi que les notions d'états adiabatiques et diabatiques.

II. 2 Caractérisation d'un système moléculaire polyélectronique

II.2.1 Configuration électronique

La configuration électronique d'un système atomique polyélectronique caractérise la répartition des électrons suivant les différentes orbitales atomiques. Cette notion peut être étendue aux systèmes moléculaires diatomiques⁽¹⁾ ainsi qu'aux molécules polyatomiques linéaires. Un électron d'un tel système est alors caractérisé par :

- son nombre quantique principal n (Taille de l'orbitale occupée).
- son nombre quantique orbital l (Moment angulaire orbital : s,p,d,f).
- la composante axiale de ce moment angulaire orbital l_z (Axe reliant les noyaux de la molécule diatomique). La valeur du nombre quantique $\lambda = |l_z|$ ($\lambda = 0,1,2,3,...$) est symbolisée par ($\sigma, \pi, \delta, \phi$...).
- la symétrie de l'orbitale qu'il occupe (u/g) dans le cas où la molécule est homo-nucléaire.

Les N électrons de la molécule, tout en respectant le principe d'exclusion de Pauli, se répartissent par séquences ...($nl\lambda_{u/g}$)... .

II.2.2 Etat électronique

Pour cette même molécule, nous pouvons définir des nombres quantiques <u>globaux</u>, soient :

• $\Lambda = \left| \sum_{i=1}^{N} \lambda_{i} \right|$ la composante axiale du moment angulaire orbital total Λ ($\Lambda = 0,1,2...$) est

symbolisée par $(\Sigma, \Pi, \Delta...)$.

- Σ représente la composante axiale du spin total S de multiplicité (2S + 1).
- $\Omega = |\Lambda + \Sigma|$
- la symétrie de fonction d'onde vis à vis de la réflection est caractérisée par la parité (+/-). A est doublement dégénéré (sauf Σ).
- la symétrie de l'orbitale (u/g) dans le cas où la molécule diatomique est homonucléaire.

Un état électronique est alors donné par : ${}^{2S+1}\Lambda_{\Omega,g/u}^{+/-}$

Les transitions entre états électroniques sont régies par des règles de sélections ; la règle de Hund permet de classer ces états en fonction de l'énergie électronique.

II. 3 - Equation de Schrödinger - Courbes et surfaces d'énergie potentielle

La recombinaison dissociative résulte de transitions non radiatives entre un continuum (AB^++e) et un état lié (AB^{**}) . Ces transitions ne peuvent pas avoir lieu dans le cadre d'un traitement stationnaire de l'hamiltonien électronique. Ce paragraphe traitera de la résolution de l'équation de Schrödinger et détaillera les notions d'états adiabatiques et diabatiques.

II. 3.1 Résolution de l'équation de Schrödinger

Pour chacun des états électroniques caractérisés dans le paragraphe précédent, nous pouvons résoudre l'équation de Schrödinger⁽²⁾:

$$H\Psi = E\Psi.$$
 (II.2)

L'hamiltonien total H est donné par :
$$H = T_R + H_e$$
 (II.3)

L'opérateur énergie cinétique des noyaux est :
$$T_{\rm R} = -\frac{h \Delta_{\rm R}}{2\mu}$$
 (II.4)

La masse réduite du système est μ .

L'hamiltonien électronique est H_e

En admettant que l'on puisse décomposer la fonction d'onde totale Ψ en produits de fonctions d'onde électroniques $\Phi(r, R)$ et de fonctions d'onde nucléaires $\chi(R)$:

$$\Psi(\mathbf{r}, \mathbf{R}) = \sum_{i} \Phi_{i}(\mathbf{r}, \mathbf{R}) \chi_{i}(\mathbf{R})$$
(II.5)

Les coordonnées des électrons sont notées r tandis que la distance internucléaire est R. L'équation de Schrödinger devient :

$$\left[T_{R} + T_{ii}^{''} + V_{ii}(R) - E\right]\chi_{i}(R) = -\sum_{j \neq i} (V_{ij} + T_{ij}^{'} + T_{ij}^{''})\chi_{j}(R)$$
(II.6)

avec

$$V_{jk}(R) = \langle \Phi_j | H_e | \Phi_k \rangle$$
 (II.7)

$$\mathsf{T}_{ij}^{'} = -\frac{\hbar^2}{\mu} \langle \Phi_i | \vec{\nabla}_{\mathsf{R}} | \Phi_j \rangle. \vec{\nabla}_{\mathsf{R}} \tag{II.8}$$

$$T_{ij}^{"} = -\frac{\hbar^2}{2\mu} \langle \Phi_i | \Delta_R | \Phi_j \rangle$$
 (II.9)

L'approximation de Born & Oppenheimer, qui consiste à traiter séparément le mouvement des noyaux de celui des électrons ($m_{noyau} >> m_e$), permet de poser : $T'_{ij} = T''_{ij} = 0$ (II.10)

 $[T_{R} + V_{ii}(R) - E]\chi_{i}(R) = -\sum_{i \neq i} V_{ij}\chi_{j}$ Soit finalement : (II.11)

II.3.2 Etats stationnaires ou adiabatiques

La représentation matricielle de l'hamiltonien total H doit être diagonale pour que l'équation de Schrödinger ait des solutions physiques. Il est possible de construire la matrice T_R telle que les fonctions d'onde nucléaires χ_i soient totalement découplées et représentent des états stationnaires.

Mathématiquement, nous avons :
$$[T_R + V_{ii}^{ad}(R) - E]\chi_i(R) = 0$$
 (II.12)

Cette relation a deux conséquences :

- V_{ii}^{ad}(R) représente l'énergie potentielle internucléaire de l'hamiltonien électronique.
- Le coefficient V_{ii} de l'équation (II . 11) doit être nul .

$$H_{e}\Phi_{i}^{ad} = V_{ii}^{ad}(R)\Phi_{i}^{ad}$$
(II.13)

$$\mathbf{V}_{ij}^{au} = \langle \Phi_i^{au} | \mathbf{H}_e | \Phi_j^{au} \rangle = \mathbf{V}_{ii}^{au} \delta_{ij} \tag{II.14}$$

(II 12)

 δ_{ij} est le symbole de Kroenecker

Nous venons de construire un hamiltonien électronique H_e dont la représentation matricielle est diagonale. Par voie de conséquence, Φ_i^{ad} est fonction propre stationnaire de l'hamiltonien électronique. Les états électroniques décrits sont stationnaires ou adiabatiques .

 $\frac{PROBLEME}{PROBLEME}$: Les courbes d'énergie potentielle correspondant aux états adiabatiques sont soumises à la règle de croisement évité de Von Neumann & Wigner (1929). Cette dernière stipule que deux états adiabatiques de même symétrie (spin, parité, moment angulaire), caractérisés par $V_{ii}^{ad}(R)$ et $V_{ij}^{ad}(R)$, ne peuvent avoir des courbes d'énergie potentielle qui se croisent. Cette contrainte de croisement évité s'accommode mal du dogme, aujourd'hui remis en cause -paragraphe II . 5 -, qui veut que la RD résulte d'intersection des courbes d'énergie potentielle. La difficulté peut être contournée car l'état dissociatif de AB (noté AB**) n'est pas un état ordinaire de la molécule AB ; ce n'est surtout pas un état propre stationnaire de l'hamiltonien électronique H_e. Il s'agit plutôt d'un état résonant (quasistationnaire).

II. 3. 3 Etats quasistationnaires ou diabatiques

Vu les caractéristiques des états stationnaires décrits dans le paragraphe précédent, les états quasistationnaires doivent répondre aux conditions suivantes⁽³⁻⁵⁾ :

- l'approximation de Born & Oppenheimer doit demeurer valide.
- l'hamiltonien électrique H_e doit être exact et explicitement défini.

• la nouvelle représentation doit être non diagonale pour que les états ne soient plus soumis à la règle de Von Neuman & Wigner.

Considérons la transition non radiative $AB^+ + e \rightarrow AB^{**}$. Les états électroniques qui y sont associés, sont caractérisés par les vecteurs $|\Phi_r\rangle$ et $|\Phi_{p,i}\rangle$. La matrice de l'hamiltonien électronique est rendue non diagonale par l'action des projecteurs P et Q tels que :

$$\mathbf{Q} = \left| \boldsymbol{\Phi}_{\mathbf{r}} \right\rangle \left\langle \boldsymbol{\Phi}_{\mathbf{r}} \right| \tag{II.15}$$

$$\mathbf{P} = 1 - \left| \boldsymbol{\Phi}_{\mathrm{r}} \right\rangle \! \left\langle \boldsymbol{\Phi}_{\mathrm{r}} \right| \tag{II.16}$$

Définissons les vecteurs $\left| \Phi_{r} \right\rangle$ et $\left| \Phi_{p,i} \right\rangle$ comme suit :

- Φ_r est la fonction d'onde électronique de l'état résonant AB**. Son énergie $\varepsilon_r = \langle \Phi_r | QH_e Q | \Phi_r \rangle$ est stationnaire.
- Les $\Phi_{p,i}$ sont les fonctions d'onde électronique du continuum (AB ⁺ + e). Les $|\Phi_{p,i}\rangle$ sont vecteurs propres de l'opérateur P H_e P tels que $\varepsilon_{p,i} = \langle \Phi_{p,i} | PH_e P | \Phi_{p,i} \rangle$. Ils sont de plus orthogonaux à $|\Phi_r\rangle$ et complètent la base.

L'hamiltonien H_e se met sous la forme :

$$\mathbf{H}_{e} = \begin{bmatrix} \mathbf{Q}\mathbf{H}_{e}\mathbf{Q} & \mathbf{Q}\mathbf{H}_{e}\mathbf{P} \\ \mathbf{P}\mathbf{H}_{e}\mathbf{Q} & \mathbf{P}\mathbf{H}_{e}\mathbf{P} \end{bmatrix}$$
(II.17)

ou plus explicitement :

$$\mathbf{H}_{e} = \begin{bmatrix} \boldsymbol{\epsilon}_{r} & \mathbf{V}_{1} & \mathbf{V}_{2} & \mathbf{V}_{3} & \dots \\ \mathbf{V}_{1} & \boldsymbol{\epsilon}_{p,1} & \mathbf{0} & \mathbf{0} & \dots \\ \mathbf{V}_{2} & \mathbf{0} & \boldsymbol{\epsilon}_{p,2} & \mathbf{O} & \dots \\ \mathbf{V}_{3} & \mathbf{0} & \mathbf{0} & \boldsymbol{\epsilon}_{p,3} & \dots \\ \dots & \dots & \dots & \dots & \dots \end{bmatrix}$$
(II .18)

Les éléments de matrice Vi (R) sont définis par : $V_i(R) = \langle \Phi_r | H_e | \Phi_{p,i} \rangle$ (II .19)

Ils revêtent un intérêt capital car ils représentent les couplages entre les différents états électroniques impliqués dans la transition. La largeur de la résonance est un paramètre fondamental pour le complexe moléculaire. Elle apparaît dans les calculs de sections efficaces (relation II . 27). La largeur de la résonance est donnée par : $\Gamma = 2\pi |V_i(R)|^2$ (II .20)

Les états diabatiques définis plus haut sont particulièrement bien adaptés à l'étude de la diffusion élastique, des transferts de charges symétriques et de la recombinaison dissociative. C'est tout naturellement dans ce cadre que le paragraphe suivant se situe.

II . 4 -Recombinaison dissociative AVEC CROISEMENT des courbes d'énergie potentielle

Précisons, d'entrée de jeu, que toutes les transitions entre états électroniques évoquées pour décrire les différents mécanismes de RD sont NON-RADIATIVES. Elles sont toutes VERTICALES en ce sens que le temps caractéristique de la transition est infiniment petit devant la période de vibration des noyaux. Les transitions se font à distance internucléaire R constante.

II.4.1 Mécanisme direct de RD (Bates 1947)

Il s'agit historiquement⁽⁶⁾ du premier mécanisme découvert. Pour la commodité de l'exposé, nous ne considérerons que le cas d'un ion diatomique AB^+ .

II.4.1.a Description du mécanisme

Le diagramme synthétique de la recombinaison est : $AB^+ + e \leftrightarrow AB^{**} \rightarrow A + B$ La figure 1 illustre la description qui suit.

Un électron incident d'énergie $E_e = E_{cm}$ est capturé dans un état doublement excité AB^{**} alors que l'ion AB^+ se trouvait au repos à la distance internucléaire de capture R_c . L'état AB^{**} a été précédemment décrit comme quasistationnaire et résonant, caractérisé par une énergie de résonance ε_r et une largeur de résonance Γ . Le fait qu'il soit doublement excité le classe dans la catégorie des états superexcités dits de Premier Ordre. Deux de ses électrons sont excités : le projectile et un des électrons de la cible AB^+ . Vu que l'énergie électronique de AB^{**} est supérieure à celle du seuil d'ionisation de AB, pour des distances inférieures à la distance de stabilisation R_s , l'état AB^{**} pourra soit s'autoioniser (flèche descendante), soit se dissocier en convertissant son excès d'énergie électronique sous forme d'énergie cinétique des produits neutres A + B. La dissociation peut classiquement avoir lieu ; la recombinaison est alors complète. L'hypothèse de transition verticale (à R constant) fait que la section efficace σ_{DR} du processus direct est proportionnelle à l'intégrale de recouvrement des fonctions d'onde vibrationnelles $\chi_+(R)$ de l'ion AB^+ et $\chi_d(R)$ de l'état dissociatif AB^{**} : c'est le principe de Frank - Condon ⁽⁷⁾.

<u>II.4.1.b Section efficace</u> $\sigma_{RDDirect}(E_{cm})$

La section efficace peut se mettre sous forme d'un produit :

$$\sigma_{\text{RDDirect}}(\mathsf{E}_{\text{cm}}) = \sigma_{\text{capture}}(\mathsf{E}_{\text{cm}}).\mathsf{S}_{\mathsf{f}}(\mathsf{E}_{\text{cm}}) \tag{II .21}$$

Nous définissons :

- $\sigma_{capture}(\mathsf{E}_{cm})$: section efficace de capture électronique. Elle représente la probabilité qu'a un électron d'énergie $E_e = E_{cm}$ d'être capturé par l'ion moléculaire AB^+ pour former AB^{**} .
- $S_f(E_{cm})$: facteur de survie. Il représente la probabilité qu'a $AB^{**}d$ 'éviter l'autoionisation. <u>Détermination de</u> $\sigma_{capture}(E_{cm})$

Elle est donnée par⁽⁸⁾ :

$$\sigma_{\text{capture}}(\mathsf{E}_{\text{cm}}) = \frac{\pi^3 g}{\hbar m_e} \frac{1}{\mathsf{E}_{\text{cm}}} \left| \langle \chi_+(\mathsf{R}) | \mathsf{V}_e(\mathsf{R}) | \chi_d(\mathsf{R}) \rangle \right|^2 \qquad (\text{II} .22)$$

Le rapport des multiplicités de l'état dissociatif AB^{**} et de l'état du continuum (AB^++e) est g. La masse de l'électron est m_e ; l'énergie relative dans le référentiel du centre de masse est E_{cm} .

$$V_{e}(R) = \langle \Phi_{+}(r,R)\Phi_{e}(r,R)|H_{e}|\Phi_{d}(r,R)\rangle \qquad (II.23)$$

Les $V_e(R)$ sont les termes non diagonaux de l'hamiltonien électronique évoqués précédemment pour justifier l'emploi du traitement diabatique ; ils expriment le couplage électronique entre états. La largeur d'autoionisation Γ est la largeur de la résonance ; elle est donnée par :

$$\Gamma(\mathbf{R}) = 2\pi \left| \mathbf{V}_{\mathrm{e}}(\mathbf{R}) \right|^2$$

Le temps de vie de la résonance par rapport à l'autoionisation est donné par $\frac{\hbar}{\Gamma(R)}$. Etant donné que $\Phi_+(r,R)$, $\Phi_e(r,R)$ et $\Phi_d(r,R)$ sont des fonctions d'onde qui varient très lentement avec R (principe de Born & Oppenheinmer), nous pouvons écrire :

$$\sigma_{\text{capture}}(\mathsf{E}_{\text{cm}}) = \frac{\pi^2 g}{2\hbar m_{\text{e}}} \frac{\Gamma(\mathsf{R})}{\mathsf{E}_{\text{cm}}} |\langle \chi_+(\mathsf{R}) | \chi_{\text{d}}(\mathsf{R}) \rangle|^2 \qquad (\text{II} .24)$$

 $\langle \chi_+(R) | \chi_d(R) \rangle$ est l'intégrale de recouvrement des fonctions d'onde vibrationnelles $\chi_+(R)$ et $\chi_d(R)$. Son module élevé au carré est le facteur de Frank-Condon (FC). La fréquence d'oscillation de la fonction $\chi_d(R)$ varie avec la pente de la courbe d'énergie potentielle de AB^{**}. Dans la plupart des cas, $\chi_d(R)$ est assimilable à une fonction delta. Détermination de S_f(E_{cm})

Le facteur de survie est plus délicat à évaluer. Une expression de $S_f(E_{cm})$ relative à l'attachement dissociatif (Bardsley & Mandl ⁽⁹⁾ 1968) peut être étendue à la recombinaison dissociative, du moins pour des E_e de quelques electron-volts.

$$S_{f(}(E_{cm}) = e^{\frac{t_{R_c}}{\hbar}dt}$$
(II.25)

Le temps de vie d'un état autoionisant est de l'ordre de 10^{-14} s alors que la stabilisation s'effectue en 10^{-16} - 10^{-15} s à basse énergie. Nous avons :

$$S_{f}(E_{cm}) = 1$$
 (II.26)

La section efficace de RD directe est alors donnée par :

$$\sigma_{\text{RDDirect}}(\mathsf{E}_{cm}) = \frac{\Gamma(\mathsf{R}).\mathsf{FC}.\mathsf{S}_{\mathsf{f}}}{\mathsf{E}_{cm}}$$
(II.27)

Bien que le mécanisme direct de RD soit considéré comme le plus important dans le cas des ions diatomiques, il est intéressant d'aborder le mécanisme indirect.

II. 4. 2 Mécanisme indirect de RD (Chen & Mittelman⁽¹⁰⁾1967 - Bardsley⁽¹¹⁾ 1968)

A l'inverse du mécanisme direct pour lequel E_{cm} présente un spectre d'énergie continu, le mécanisme indirect est avant tout caractérisé par un spectre d'énergie DISCRET. En effet le transfert de l'énergie cinétique de l'électron incident Ecm se fait vers le mouvement des noyaux, qui est quantifié ; le projectile est alors capturé dans un état de Rydberg vibrationnellement excité. Il y a RUPTURE du principe de Born & Oppenheimer. Un état de Rydberg AB^Rest un état rovibrationnellement excité dit de Deuxième Ordre. A l'inverse de l'état dissociatif AB^{**}, son énergie électronique est inférieure à celle du seuil d'ionisation. En revanche son énergie totale, somme de l'énergie électronique et rovibrationnelle, est supérieure à celle du seuil d'ionisation ; l'évolution entre AB^R et AB^{**}est donc possible. Physiquement, un état de Rydberg s'apparente à un « atome » hydrogénoïde, doté d'un cœur ionique AB^+ , autour duquel gravite un électron faiblement lié (n^{*}). Un tel état AB^{R} est donc caractérisé par les nombres quantiques (n^*, v) , v étant le nombre quantique de vibration du cœur AB⁺. Les courbes d'énergie potentielle de ces états de Rydberg se regroupent en faisceau sous celle de l'ion AB⁺comme indiqué sur la figure 2. La violation du principe de Born & Oppenheimer, mentionnée précédemment, réside dans le fait que l'électron capturé a une période de rotation « très » grande car il est faiblement lié (n^{*} grand). Le mouvement de cet électron n'est plus indépendant de la vibration v.

II.4.2.a Description du mécanisme

Le diagramme synthétique de la recombinaison est : $AB^+ + e \leftrightarrow AB^R \rightarrow AB^{**} \rightarrow A + B$ La figure 2 illustre la description . Un électron incident est capturé dans un état de Rydberg AB^R suivant une transition non radiative et verticale. Pour que cette transition ait une probabilité non négligeable d'avoir lieu, Berry⁽¹²⁾ a suggéré que $\Delta v = v^R - v^+ = 1$. Notons que pour des nombres quantiques v^R importants, l'autoionisation devient probable suivant $AB^{R} \rightarrow AB^{+} + e$ (flèche descendante). L'état de Rydberg AB^R évolue ensuite vers l'état dissociatif AB^{**}. La stabilisation se fait alors suivant le mécanisme direct.

$\underline{II}.4.2.b \text{ Section efficace } \sigma_{DRIndirect(E_{cm})}$

Le mécanisme indirect est purement résonant et c'est dans ce cadre que Bardsley & Biondi l'ont traité. La RD indirecte fait apparaître des structures résonantes dans les sections efficaces données par le mécanisme direct. Ces structures sont données par la formule de Breit-Wigner⁽¹¹⁾

$$\sigma_{\text{RDIndirect}}(\mathsf{E}_{\text{cm}}) = \sum_{\text{s}} \frac{\pi \hbar^2 g}{4m_{\text{e}}} \frac{1}{\mathsf{E}_{\text{cm}}} \frac{\Gamma_{\text{sa}}\Gamma_{\text{sd}}}{\left[(\mathsf{E}_{\text{cm}} - \mathsf{E}_{\text{s}})^2 + \frac{1}{4}(\Gamma_{\text{sa}} + \Gamma_{\text{sd}})^2\right]} \qquad (\text{II} .28)$$

s représente les différentes résonances d'énergie E_s.

 Γ_{sa} représente la largeur de résonance d'autoionisation .

 Γ_{sd} représente la largeur de résonance de dissociation .

Cette relation présente néanmoins des difficultés que l'on peut contourner par les méthodes MQDT (paragraphe II . 6 . 2).

<u>II.4.3 Mécanisme « Full Direct » de RD (O'Malley 1989)</u> Il s'agit d'une variante⁽¹³⁻¹⁴⁾ des deux mécanismes précédemment exposés. Au mécanisme direct a été ajoutée une interaction entre l'état doublement excité AB^{**} et un état de Rydberg AB^R : l'électron le plus périphérique de l'état doublement excité peut être temporaire-ment capturé sous forme d'un état de Rydberg. La restriction de Berry n'est alors plus nécessaire. L'autoionisation (flèches descendantes) peut avoir lieu, soit dans l'état AB** (entre R=R_C et R=R_S) au quel cas il s'agit du mécanisme direct, soit dans l'état de Rydberg AB^R.

II. 4. 4 Super RD de clusters et d'ions diatomiques de gaz rares (Bates 1991)

Le terme de Super RD a été employé par Bates (1991) pour souligner la rapidité « anormale » (au sens de la théorie classique) de la recombinaison dissociative de certains ions. On entend par rapidité anormale, une recombinaison caractérisée par des vitesses de réactions de quelques 10⁻⁶ cm³ s⁻¹ au lieu des quelques 10⁻⁷ cm³ s⁻¹ qui caractérisent des recombinaisons dominées par le processus direct (ex : O_2^+ , N_2^+ , NO^+). Deux classes d'ions présentent des vitesses de réaction anormalement élevées : d'une part les clusters (ex : $N_2 N_2^+$) et les ions diatomiques de gaz rares (ex : Ne_2^+, Ar_2^+), d'autre part les ions à pont (ex : $H_2O-H^+-H_2O$). Ne traitant dans ce chapitre que des recombinaisons hydrogène dissociatives dues à des croisements de courbes d'énergie potentielle, nous ne nous intéresserons qu'à la première classe précédemment citée. La deuxième classe sera traitée au paragraphe II . 5 . 3 dans le cadre de non-croisements des courbes d'énergie potentielle. En fait, la super RD de première classe s'apparente, au niveau du principe, à la RD « classique » (mécanisme direct). Pour cette dernière, Bates⁽¹⁵⁾ montre que la vitesse de recombinaison est donnée par :

$$\alpha_{\rm SRD}(T_{\rm e}) = \frac{2\pi^2 \hbar^2 \Gamma |\chi_+(R_{\rm S})|^2}{(2\pi m_{\rm e}^3 k T_{\rm e})^{1/2}} \frac{r}{|V'(R_{\rm S})|}$$
(II.29)

en ayant préalablement supposé que le croisement des courbes d'énergie potentielle se fait au niveau v=0 de l'ion.

En outre, la largeur de capture est Γ , la température électronique est T_e et le module au carré de la fonction d'onde vibrationnelle de l'ion à la distance internucléaire R_s est $|\chi_+(R_s)|^2$. <u>Et surtout</u>, le rapport des poids statistiques des états dissociatifs sur ceux de l'ion est r et la pente de l'état dissociatif considéré à la distance internucléaire de croisement est V'(R_s). Ces deux derniers termes apparaissent dans l'expression de α , et sont d'une importance capitale. Autant le terme inclus dans les parenthèses, quelque soit l'ion considéré, est sensiblement du même ordre de grandeur, autant le rapport $\frac{r}{|V'(R_s)|}$ est extrêmement sensible à la nature de l'ion considéré.

Figure 3 : RD Full Directe

uu	the d mustration, hous proposons les cas survaits.					
		r	$\dot{V}(R_{\rm S}) (eV A^{-1})$	$r/V'(R_S) (A eV^{-1})$	α (cm ³ s ⁻¹)	
	O_2^+	11/4	34	8,1 10 ⁻²	1,95 10 ⁻⁷	
	Ar_2^+	23/4	3.4	1,7	9,1 10 ⁻⁷	

<u>Conclusion</u> : les ions subissant la super recombinaison dissociative présentent, pour leurs états dissociatifs associés, des pentes beaucoup plus faibles que les ions subissant la recombinaison dissociative classique.

II. 4.5 Effets des degrés de liberté de vibration et de rotation

<u>La vibration</u> : Dans les milieux interstellaires, les ions moléculaires sont dans leur état vibrationnel fondamental. Des considérations théoriques et des observations expérimentales suggèrent une sensibilité des sections efficaces σ vis à vis de l'état vibrationnel v de l'ion AB⁺. Il est bien évident que d'un système ionique à l'autre, la dépendance de σ envers la vibration est très variable ; une étude au cas par cas s'impose donc. Un certain nombre d'idées générales peuvent être néanmoins dégagées ⁽¹⁶⁾ :

• la POSITION RELATIVE des courbes d'énergie potentielle de l'ion AB^+ et de la molécule dans son état dissociatif AB^{**} , ou plus exactement leur intersection (Crossing Point), est de toute première importance. Rappelons que le mécanisme « direct » de RD stipule la proportionnalité de la section efficace σ au facteur de Frank-Condon FC. • la PENTE V de la courbe d'énergie potentielle de l'état dissociatif joue un rôle important. En effet, cette pente est inversement proportionnelle à l'efficacité d'autoionisation. Ainsi Cunningham & al montrent que les gaz atmosphériques tels N₂, O₂ ou NO présentent une pente V importante et donc que leur autoionisation est négligeable. A l'inverse, la pente des dimers de gaz rares (He₂, Ar₂, Ne₂ ou Kr₂) est beaucoup faible (d'un facteur 10) ; leur autoionisation est plus importante.

Une faible autoionisation implique une relative insensibilité de la section efficace de recombinaison vis à vis de la vibration ; c'est le cas des gaz atmosphériques. En revanche, une forte autoionisation implique une plus grande sensibilité de σ vis à vis de la vibration ; c'est le cas des dimères de gaz rares.

<u>La rotation :</u> l'influence de l'état rotationnel des ions sur la section efficace σ a été très peu étudiée tant théoriquement qu'expérimentalement. Takagi ⁽¹⁷⁾ rapporte une étude théorique concernant la rotation du système (H₂⁺+e). Sa conclusion est que l'amplitude de σ est peu affectée par la rotation ; en revanche cette dernière y induit des structures résonantes..... que l'on a encore quelques difficultés à mettre en évidence expérimentalement.

II. 5 Recombinaison dissociative SANS CROISEMENT des courbes d'énergie potentielle

II.5.1 Mécanisme "Multisteps " (Bates 1993)

La justification théorique en termes de processus Direct, Indirect ou « Full Direct » de résultats expérimentaux sur les ions moléculaires tels que HCO^+ , HeH^+ ou H_3^+ s'est avérée délicate. Des études théoriques plus approfondies sur les courbes d'énergie potentielle de l'ion et de l'état dissociatif de ces systèmes - ainsi que leur positions relatives - ont montré qu'il n'y a PAS DE CROISEMENT (favorable) de ces courbes d'énergie potentielle. Ce croisement constituant le postulat des théories classiques de recombinaison dissociative, il a fallu proposer d'autres mécanismes (sans croisement) susceptibles de rendre compte des résultats expérimentaux. Dans ce nouveau cadre, Bates ⁽¹⁸⁾ a proposé le mécanisme « Multisteps ». A la différence des transitions « classiques » entre le continuum (AB⁺+e) et l'état résonant AB^{**} pour lesquelles deux électrons sont impliqués, la transition « Multisteps » a lieu via des états de Rydberg de l'ion et n'implique qu'un SEUL ELECTRON. Cela assure du même coup une bien plus grande rapidité de ce nouveau type de transitions.

L'électron est capturé dans un état de Rydberg initial (n_i^*, v_i) . Puis par effet tunnel, une succession de transitions horizontales $\Delta v = 1$ (conservation de l'énergie totale du système AB^R) permet d'atteindre la courbe d'énergie potentielle de l'état dissociatif ; le système se dissocie. La vitesse de réaction associée à ce processus relève d'une théorie des perturbations d'ordres élevés et peut se mettre sous la forme simplifiée :

$$\alpha_{\rm MRD}(T_{\rm e}) = \sum_{\rm v,n^{*}} \frac{4\pi^{3}\hbar^{2}r\Gamma_{\rm c} |J(v)|^{2}}{(2\pi m_{\rm e}kT_{\rm e})^{3/2}n^{*3}}$$
(II.30)

Les v_{max} et n_{max} correspondent à la limite de dissociation. De plus |J(v)| est une grandeur normalisée représentant le recouvrement de l'état de Rydberg (n^*,v) avec l'état dissociatif .

|J(v)| augmente avec v.

Sarpal & $al^{(19)}$, dans une récente étude sur HeH⁺, ont utilisé une approche légèrement différente au mécanisme « Multisteps ». Dans cette approche, la restriction $\Delta v = 1$ n'est plus nécessaire ; elle permet en outre de tenir compte de l'autoionisation. Elle est fondée sur les couplages diabatiques des différentes courbes d'énergie potentielle à courtes distances internucléaires bien que ces courbes ne présentent pas d'intersection.

II.5.2 RD par couplage de l'OPERATEUR ENERGIE CINETIQUE DES NOYAUX (Guberman 1994)

Egalement dans le cadre de la recombinaison dissociative sans croisement, cette approche a été développée par Guberman⁽²⁰⁾. Elle pourrait s'appliquer à HeH⁺, H₃⁺. Le point remarquable à souligner est que la dissociation a lieu via des états AB qui ne sont pas forcément répulsifs à grandes distances internucléaires mais dont l'énergie potentielle asymptotiques (R_{∞}) est inférieure à l'énergie initiale de l'ion. Les courbes d'énergie potentielle ne se coupent plus; il est possible d'opérer un traitement adiabatique de la RD. Le couplage entre états n'est plus du à l'hamiltonien électronique mais à l'Opérateur Energie Cinétique des noyaux. Cet opérateur est donné par :

$$T_{\rm N} = \frac{-\hbar^2}{2\mu} \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial}{\partial R} \right)$$
(II.31)

La masse réduite du système est μ ; la distance internucléaire est R. Les sections efficaces de RD sont alors déduites des éléments de matrice :

$$\langle \Phi_{\rm d} \chi_{\rm d} | T_{\rm N} | \Phi_{\rm +} \Phi_{\rm e} \chi_{\rm +} \rangle = \frac{-\hbar^2}{2\mu} \langle \chi_{\rm d} | B(R) + 2A(R) \frac{\partial}{\partial R} | \chi_{\rm +} \rangle \qquad (\text{II} .32)$$

$$B(R) = \left\langle \Phi_{d} \left| \frac{\partial^{2}}{\partial R^{2}} \right| \Phi_{+} \Phi_{e} \right\rangle$$
(II.33)

$$A(R) = \left\langle \Phi_{d} \left| \frac{\partial}{\partial R} \right| \Phi_{+} \Phi_{e} \right\rangle$$
(II.34)

II. 5.3 Super RD d'ions à pont hydrogène (Bates 1991)

Déjà évoquée précédemment, cette super-recombinaison dissociative, bien qu'étant aussi rapide que celles des clusters et ions diatomiques de gaz rares, diffère fondamentalement de ces dernières. Dans le cas présent, et tout comme pour le processus « Multisteps », les différentes courbes d'énergie potentielles impliquées dans la RD ne présentent pas d'intersection. Il en résulte que la transition entre le continuum ($R-H^+-R^- + e$) et l'état dissociatif n'implique qu'un seul électron. Ceci justifie la très grande rapidité de la RD⁽²¹⁾. Calquée sur une relation donnant la vitesse de RD pour une transition à deux électrons (mécanisme direct), la vitesse de super RD des ions $R-H^+-R^-$ peut se mettre sous la forme :

$$\alpha_{\rm SRD}(T_{\rm e}) = \frac{h^3 r A F}{2(2\pi m_{\rm e} k T_{\rm e})^{3/2}}$$
(II.35)

Le rapport des poids statistiques des états dissociatifs sur ceux de l'ion est r. La recombinaison $R - H^+ - R^- + e \rightarrow R, R^- + H$ laisse apparaître le rôle central joué par l'atome d'hydrogène. L'électron se recombine sur le proton et le facteur A est alors donné par:

$$A = \langle 1s | U | l_{continuum} \rangle \tag{II.36}$$

(1s) représente l'état fondamental de l'atome hydrogène.

 $\left|l_{\text{continuum}}\right\rangle$ représente l'état du continuum (H⁺ + e).

U est le potentiel perturbateur liant les deux états sus-nommés.

$$U = e^{2} \left(\frac{1}{r} - \frac{1}{p}\right)$$
(II.37)

r est la distance entre les éléments constituants le continuum $(H^+ + e)$, tandis que p est la distance entre l'électron et le proton dans l'atome hydrogène.

Dans le cas d'une recombinaison dissociative classique, une valeur typique de A serait de l'ordre de 10¹⁴ s⁻¹; dans le cas de la super RD d'ions à Pont Hydrogène, A est de l'ordre de 10^{16} s⁻¹. L'idée de super RD apparaît naturellement, en ce sens que α y est beaucoup plus rapide que pour les ions diatomiques classiques.

F représente le facteur de Frank-Condon qui vu que les courbes d'énergie potentielle ne se croisent pas, peut se mettre sous la forme :

$$F = kT_{e} \left(\frac{2\mu}{\pi^{2}\hbar^{2}E}\right)^{1/2} I^{2}$$
(II.38)

μ est la masse réduite des produits de recombinaison.

E est l'énergie relative (dans le centre de masse) de ces produits.

$$\mathbf{I} = \int \boldsymbol{\chi}_{+}(\mathbf{R})\boldsymbol{\varphi}_{\mathrm{r}}(\mathbf{R},\mathbf{E})d\mathbf{R}$$
(II.39)

La fonction d'onde vibrationnelle est $\chi_+(R)$. La fonction d'onde réduite des produits de recombinaison d'amplitude asymptotique unité est $\varphi_{c}(R, E)$.

II. 6 Traitement théorique de la recombinaison dissociative

Les calculs théoriques relatifs à la RD relèvent tous de deux approches différentes : soit du « Mélange de Configurations » (Configuration Mixing), soit de la MQDT (Multichannel Quantum Defect Theory). Leur finalité est la détermination des sections efficaces. Notons que les deux approches conduisent au même résultat, du moins en ce qui concerne le mécanisme direct (Giusti⁽²²⁾).

<u>II . 6 . 1 Mélange de configurations - Théorie de la diffusion résonante</u> Dans cette approche^{(8)(11)(14),} l'autoionisation et la prédissociation de l'état doublement excité AB** sont décrites par des mélanges de configurations électroniques. Bien que ces dernières aient été détaillées au paragraphe II . 2 . 1, rappelons que l'ensemble des électrons d'un système moléculaire polyatomique constituant une configuration est réparti dans des orbitales moléculaires. Les fonctions d'onde du système sont calculées explicitement.

II.6.1. a Cas de l'autoionisation

Deux électrons d'un système AB, simultanément excités dans l'hypothèse d'une absence d'interaction électronique, conduiraient à un état électronique lié de ce système AB, même si son énergie électronique était supérieure à celle du potentiel d'ionisation. Comme les deux électrons de l'état AB^{**} interagissent, il en résulte une interaction des configurations de l'état AB^{**} -instable- et de l'état du continuum (AB⁺+ e) -stable-. La description de l'autoionisation apparaît alors naturellement.

II.6.1.b Cas de la prédissociation

La prédissociation est due au croisement de deux courbes d'énergie potentielle de deux configurations électroniques différentes. Mais à la différence de l'autoionisation, les deux états électroniques dont les configurations interagissent, sont stables. Il s'agit de l'état (AB^++e) et de l'état (A+B).

II. 6. 2 MQDT (Multichannel Quantum Defect Theory)

Cette théorie a été développée par Seaton ⁽²³⁾ (1966). Son but est la détermination des éléments de la matrice S, éléments indispensables au calcul des sections efficaces. Elle unifie les états liés (AB^{**}, AB^{R}) et les états du continuum $(AB^{+}+e, A+B)$. Elle est basée sur deux concepts⁽²⁴⁾ :

II.6.2. a Canaux de réaction

L'étude d'une réaction se ramène dans le référentiel du centre de masse, au mouvement d'une <u>particule relative</u> dans un champ de force à longue portée.

Deux cas se présentent : E<0 la particule relative est liée ; le canal est dit « fermé » E>0 la particule relative est libre ; le canal est dit « ouvert »

II. 6.2. b Interaction à courte et à longue portées

L'espace de configuration est divisé en deux régions :

• la région interne (ou zone de réaction). Elle est le lieu des interactions de courte portée ; le champ y est intense. Les fonctions d'onde ne sont pas explicitement déterminées. L'effet principal des interactions de courtes portées est la création d'un déphasage δ sur les fonctions d'onde de la région externe. Le sort du système (état lié au état continuum) se joue dans cette région.

• la région externe. Elle est le lieu des interactions de longue portée. Les deux types de canaux (ouvert ou fermé) s'y distinguent par un comportement asymptotique différent. Cette région est subdivisée en différentes régions correspondant aux différents couplages entre partenaires collisionnels.

II. 6. 3 Comparaison entre les deux théories

Les mécanisme direct et indirect de RD sont traités séparément dans le Mélange de Configurations. Leur interférence est occultée. L'autoionisation est également négligée dans le cadre de cette théorie. Toutes ces limitations sont bannies dans la MQDT.

II.7 - Conclusion

L'idée maîtresse qui se dégage de ce chapitre est le bouleversement récent dans les conceptions théoriques concernant la recombinaison dissociative. Les multiples mécanismes de RD peuvent être répertoriés suivant deux classes distinctes : ceux AVEC CROISEMENT des courbes d'énergie potentielles, ceux SANS CROISEMENT.

Les mécanismes de première classe, tels que la RD Direct, Indirect, « Full Direct » ou la super RD de clusters, nécessitent un traitement diabatique de l'hamiltonien électronique en raison de la règle de croisement évité de Von Neumann & Wigner. Ce traitement introduit naturellement la notion de couplage entre états électroniques. La largeur de résonance Γ , déduite des couplages, est proportionnelle aux sections efficaces σ . Les transitions électroniques entre le continuum (AB⁺+ e) et l'état dissociatif AB^{**} impliquent deux électrons. Les mécanismes de Seconde classe, tels la RD « Multisteps », la RD pilotée par l'Opérateur Energie Cinétique des Noyaux ou la Super RD à « Pont Hydrogène », sont (très) efficaces malgré l'absence de croisement des courbes d'énergie potentielle. Comme le dogme de croisement a prévalu pendant près de quarante ans, les mécanismes de seconde classe n'ont été découverts que ces dernières années.

Le chapitre suivant présente les différents dispositifs expérimentaux utilisés pour l'étude de la RD.

<u>Bibliographie</u>

	(1) G. Herzberg	«Molecular Spectra and Molecular Structure» Vol <u>1</u> p. 216
		(Van Nostrand, Toronto, 1950).
	(2) T.F. O'Malley	Adv. in Atom. and Mol. Phys., <u>7</u> , 223, (1971).
	(3) T.F. O'Malley	J. Chem. Phys., <u>51</u> , 322, (1969).
	(4) T.F. O'Malley	Phys. Rev. <u>, 150</u> , 14, (1966).
	(5) T.F. O'Malley	Phys. Rev., <u>162</u> , 98, (1967).
	(6) D.R.Bates	Phys. Rev., <u>78</u> , 492, (1950).
	(7) G. Herzberg	«Spectra of diatomic Molecules» p. 420
		(Van Nostrand, Princeton, 1950).
	(8) J.N. Bardsley	J. Phys. B, <u>1</u> , 349, (1968).
	(9) J.N. Bardsley and	F. Mandl Rept. Prog. Phys., <u>32</u> , 471, (1968).
	(10) J.C.Y. Chen and	M.H Mittleman « Abstr. 5th Int. Conf. on atomic Collisions »
		p.329 (Leningrad, 1967).
	(11) J.N. Bardsley	J. Phys. B, <u>1</u> , 365, (1968).
	(12) R.S. Berry	J.Chem. Phys., <u>45</u> , 1228, (1966).
	(13) T.F. O'Malley	«Dissociative Recombinaison : Theory, Experiment and
		applications»
		(Editions JBA. Mitchell and SL.Guberman, Singapore, 1989).
	(14) T.F. O'Malley	J.Phys. B, <u>14</u> , 1229, (1981).
	(15) D.R . Bates	J.Phys. B, <u>24</u> , 703, (1991).
	(16) A.J. Cunningha	m, T.F. O'Malley and R.M. Hobson J.Phys. B., <u>14</u> , 773, (1981).
	(17) H. Takagi	J. Phys. B, <u>26</u> , 4815, (1993).
	(18) D.R . Bates	J.Phys. B, <u>25</u> , 5479, (1992).
	(19) B.K . Sarpal, J.T	Cennyson and L.A. Morgan J. Phys. B , <u>27</u> ,5943,(1994).
	(20) S.L. Guberman	Phys. Rev. A., <u>49</u> , 4277, (1994).
	(21) D.R . Bates	J.Phys. B, <u>25</u> , 3067, (1992).
	(22) A . Giusti - Suzo	or, J.N Bardsley and C. Derkits Phys. Rev. A., <u>28</u> , 682,
(1983)).	
	(23) M.J. Seaton	Proc. Phys. Soc., <u>88</u> , 801, (1966).

(24) A. Giusti J. Phys. B, <u>13</u>, 3867, (1980).

CHAPITRE III - TECHNIQUES ET DONNEES EXPERIMENTALES

- III.1 Introduction
- III . 2 Dispositifs expérimentaux
 - III . 2 . 1 Mesure des coefficients de vitesse $\alpha(T_e)$
 - III . 2 . 1 . a Expériences basées sur la variation temporelle de la densité d'ionisation
 - III.2.1.a.a Tube à choc
 - III. 2.1. a. b Post Décharge Stationnaire
 - III.2.1.a.c Méthode d'Amano
 - III . 2 . 1 . a . d Pulse Radiolysis
 - III . 2 . 1 . b Expériences basées sur la variation spatiale de la densité d'ionisation
 - III.2.1.b.a Flammes
 - III.2.1.b.b FALP
 - III . 2 . 2 Mesure des sections efficaces $\sigma(E_{cm})$
 - III. 2.2. a Calcul de la section efficace $\sigma(E_{cm})$ à partir de $\langle \sigma(v_{rel})v_{rel} \rangle$
 - III.2.2.b « Single Pass Experiments » : Merged, Inclined, Crossed Beams
 - III . 2 . 2 . b . a Inclined Beams
 - III.2.2.b.b Crossed Beams
 - III.2.2.c « Multipass Experiments » : Anneau de Stockage (Storage Ring)
 - III.2.2.c.a «Electron Cooling»
 - III.2.2.c.b Mesure de $\langle \sigma(v_{rel})v_{rel} \rangle$
 - III.2.2.c.c Résolution en énergie
 - III . 2 . 2 . c . d Calcul de la section efficace $\sigma(E_{cm})$
 - III.2.2.d Piège à ions (Ion Trap)
- III. 3 Relation entre $\sigma(E_{cm})$ et $\alpha(T_e)$
- III . 4 Revue de données expérimentales
- III.5 Conclusion

III.1 - Introduction

L'étude expérimentale de la recombinaison dissociative se ramène à la mesure de deux paramètres. Il s'agit d'une part de la probabilité de recombinaison, et d'autre part des rapports de branchement des différents canaux de sortie.

La probabilité de recombinaison peut être mesurée sous deux formes : la section efficace $\sigma(E_{cm})$ ou le coefficient de vitesse $\alpha(T_e)$. Une relation mathématique lie ces deux grandeurs physiques entre elles (paragraphe III. 3).

Les rapports de branchement f caractérisent l'importance relative des différents canaux de sortie. Ils peuvent être déterminés par des méthodes spectroscopiques⁽¹⁻³⁾.

III. 2 - Dispositifs expérimentaux

Ce paragraphe a pour but de présenter la plupart des techniques expérimentales qui sont utilisées -ou qui l'ont été - dans l'étude de la RD. Elles peuvent être classées en deux catégories :

- <u>Première catégorie</u> : celles où sont mesurées les disparitions des ions ou des électrons dues à la RD.
- <u>Seconde catégorie</u> : celles où sont détectées les espèces neutres (excitées) issues de la RD.

<u>III.2.1</u> Mesure des coefficients de vitesse $\alpha(T_e)$

III.2.1. a Expériences basées sur la variation temporelle de la densité d'ionisation

Les quatre dispositifs présentés ci-dessous appartiennent à la première catégorie.

III.2.1.a.a Tube à choc

Ce dispositif permet la mesure de la vitesse de recombinaison $\alpha(T_e,T_i)$ pour différentes températures. Deux configurations expérimentales sont utilisées⁽⁴⁾ : l'une avec chauffage micro-onde des électrons ($T_e > T_i = T_g$), l'autre sans chauffage (équilibre thermodynamique $T_e = T_i = T_g$).

Figure 1 : Shock Tube

La brusque rupture du diaphragme provoque une onde de choc qui se propage dans le gaz pilote avec un nombre de Mach de quelques unités. La vitesse de cette onde ainsi que l'épaisseur du diaphragme définissent la température du gaz T_g . Simultanément à la création de cette onde, une décharge RF ionise une partie du gaz ; la décharge est néanmoins stoppée avant le passage de l'onde de choc. Ainsi lors de l'interaction plasma - onde de choc, la thermalisation des ions s'effectue en quelques collisions. La thermalisation des électrons en l'absence de chauffage micro-onde s'effectue en quelques 10^5 collisions. Le temps de mesure est limité par la relaxation des températures cinétiques T_i et T_e .

L'évolution temporelle de la densité ionique $n_{i}\mbox{ est donnée par}$:

$$\frac{dn_i}{dt} = -\alpha n_i n_e \qquad (\text{III}.1)$$

La diffusion ambipolaire est négligée ; le seul processus de disparition des espèces chargées est la recombinaison dissociative. En tenant compte de l'électroneutralité du plasma, nous pouvons écrire :

$$\frac{1}{n_{i}(t)} = \frac{1}{n_{i}(t_{0})} + \alpha(t - t_{0})$$
(III .2)

Pour calculer $\alpha(T_c)$, l'évolution temporelle de n_i est mesurée à l'aide de sondes électrostatiques doubles auxquelles est appliquée une tension de saturation. La réponse de la sonde est le courant de saturation I_i . Ce courant est proportionnel à n_i selon⁽⁵⁾:

$$I_{i} = \frac{1}{4} K n_{i} e \overline{v}_{i} A \qquad (III .3)$$

K=1 est une constante de l'expérience.

La vitesse thermique moyenne des ions est $\overline{v}_i = \sqrt{\frac{8kT_i}{\pi m_i}}$.

La surface de la sonde est A.

Dans le cas du chauffage micro-onde, la température électronique est mesurée à l'aide d'une autre sonde électrostatique.

Cette technique du tube à chocs rend possible l'étude de la RD en fonction de la température vibrationnelle⁽⁶⁾ des ions ($T_v = T_i$). Toutefois dans certaines expériences, l'état vibrationnel de ces ions ne peut être précisé or il est très probable qu'ils aient été vibrationnellement excités. Une autre objection peut être portée quant à la nature de l'ion étudié : aucun dispositif ne permet de caractériser l'ion qui se recombine. Enfin, il a pu être montré que la température du gaz T_g et la composition ionique du plasma derrière le front de l'onde de choc varient de façon difficilement maîtrisable.

III. 2. 1. a. b Post décharge stationnaire

Ce dispositif a permis la mesure du coefficient de vitesse $\alpha(T_e)$ pour un nombre important d'ions moléculaires.

Figure 2 : Post décharge stationnaire

Le plasma est créé dans une cavité micro-onde. Deux configurations peuvent être utilisées. La première consiste en l'équilibre thermodynamique du plasma ($T_e = T_i = T_g$); la température du gaz T_g peut être modifiée par chauffage des parois de l'enceinte expérimentale. La seconde consiste à chauffer les électrons ($T_e > T_i = T_g$) en rajoutant un mode d'excitation à la cavité micro-onde. Si E_h est le champ électrique de chauffage, la température cinétique T_e des électrons est donnée par ⁽⁷⁾:

$$T_{e}=T_{g}+\frac{e^{2}m_{g}\overline{E}_{h}^{2}}{6k\omega_{h}^{2}m_{e}^{2}}$$
(III .4)

La masse des espèces neutres est m_g tandis que ω_h est la fréquence du champ micro-onde. L'excitation micro-onde est stoppée ; si la RD est le seul processus de disparition des espèces chargées, la vitesse apparente de recombinaison α peut être calculée par l'étude de l'évolution temporelle de \overline{n}_e .

Nous avons :
$$\frac{1}{\overline{n}_{e}(t)} = \frac{1}{\overline{n}_{e}(t_{0})} + \alpha(t-t_{0})$$

La présence d'un plasma d'électrons dans une cavité de fréquence propre ω_0 provoque un décalage $\Delta \omega$ de la fréquence de résonance de cette cavité ; cette propriété permet de mesurer la densité électronique moyenne du plasma. En pratique un champ électrique sonde E_p est utilisé pour mesurer $\Delta \omega$. La densité \overline{n}_e est liée à $\Delta \omega$ par⁽⁸⁾:

$$\overline{\mathbf{n}}_{e} = \frac{\mathbf{m}_{e} \boldsymbol{\varepsilon}_{o}}{\mathbf{e}^{2}} \frac{\boldsymbol{\omega}_{o}}{\mathbf{f}_{(r,\boldsymbol{\theta},z)}} \Delta \boldsymbol{\omega}$$
(III .6)

(III.5)

Le facteur géométrique $f(r,\theta,z)$ tient compte de la distribution spatiale des densités électroniques qui n'est pas uniforme dans la cavité. Cette distribution est généralement caractéristique du mode fondamental de diffusion. Seul un coefficient apparent α' de RD peut être mesuré à partir de \overline{n}_e . L'obtention du coefficient réel $\alpha(T_e)$ est possible grâce aux tabulations de Gray & Kerr⁽⁹⁾.

Une des difficultés de la technique des « Stationary Afterglow » provient du fait que les zones de production et de recombinaison des ions sont identiques. Cette difficulté est évitée dans la technique FALP décrite ci-dessous. De plus, la technique n'est exploitable qu'en l'absence d'espèces métastables ; ces dernières constituent une source d'ionisation.

Dans le cas où deux espèces recombinent dans le plasma, un coefficient global α_{gl} peut être déduit du coefficient global apparent α_{gl} . Nous obtenons⁽¹⁰⁾ :

$$\alpha_{gl} = \frac{\alpha_l + R\alpha_2}{l + R} \quad \text{avec} \quad R = \frac{n_{i2}}{n_{i1}}$$
(III.7)

Les vitesses de recombinaison dissociative des ions (1) et (2) sont respectivement α_1 et α_2 . La nature de l'ion peut être déterminée par spectrométrie de masse. En revanche, l'état énergétique de l'ion n'est généralement pas maîtrisé (vibration).

<u>III.2.1.a.c Méthode d'AMANO</u> Cette méthode ⁽¹¹⁾ a permis la mesure sélective de la vitesse de recombinaison dissociative de H⁺₃ grâce à l'absorption par le plasma d'une lumière infrarouge obtenue par un laser accordable. Le plasma est généré dans une décharge pulsée d'hydrogène, et se trouve à l'équilibre thermodynamique ($T_g = 213^\circ$ K).

Après arrêt de la décharge, l'évolution temporelle de la densité ionique est donnée par l'équation (III . 2). L'évolution d'un état particulier (v, J) de l'ion H⁺₃ est mesurée grâce à l'absorption par cet état d'une lumière de longueur d'onde précise. Le trajet de cette lumière est accru par de multiples réflexions entre des miroirs. L'intensité absorbée par le plasma est mesurée ; elle est donnée par :

$$I(t) = I_c e^{-k(t)l}$$
(III.8)

L'intensité du laser sans absorption est I_c tandis que le trajet de la lumière est l. La densité d'ions est reliée au coefficient d'absorption k(t) par :

k(t)=5,46
$$10^{-13} \sqrt{\frac{m_i}{T_i}} \mu_2 f_v f_J n_{i(v,J)}(t)$$
 (III .9)

La masse m_i de l'ion est exprimée en a m u ; le moment de transition dipolaire est μ . Enfin les

f_vf_J représentent les poids statistiques de l'état (v , J) par rapport aux autres états.

III.2.1.a.d "Pulse radiolysis"

Cette méthode⁽¹²⁾ est basée sur l'émission photonique des produits neutres de RD. Un fort courant d'électrons primaires est produit lors d'un pulse de quelques dizaines de nanosecondes. Ces électrons sont arrachés à des aiguilles de tungstène par effet d'émission de champ. Le champ règne entre les plaques d'un condensateur portées à une différence de potentiel de quelques dizaines de kilo-électronvolts. L'irradiation, par les électrons primaires, de la cellule contenant le gaz parent, permet de créer l'ion étudié. Les concentrations ioniques sont telles que le temps de vie des ions est négligeable devant le temps caractéristique des réactions ions-impuretés ; l'effet des impuretés est alors négligeable. On suppose que le temps de thermalisation des électrons secondaires est négligeable devant le temps caractéristique de la recombinaison dissociative.

Figure 3 : Expérience d'Amano

Pour calculer $\alpha(T_e)$, il faut étudier la décroissance du signal d'émission I des produits de RD en fonction du temps. Si la durée de vie radiative des états excités est négligeable devant le temps de décroissance du signal I, nous obtenons⁽¹³⁾:

$$I\propto [ProduitsRD] \propto n_i n_e = n_e^2$$
 (III. 10)

L'évolution temporelle de la densité électronique est donnée par :

$$\frac{1}{n_{e}(t)} = \frac{1}{n_{e}(t_{0})} + \alpha(t - t_{0})$$
(III.11)

(III.

L'instant t_o est défini par la fin du pulse ; celui au bout duquel $I=\frac{I_o}{2}$ $\left(n_e=\frac{n_{eo}}{2}\right)$ est noté t₄₂. $\alpha = \frac{1}{n_{e0}t_{1/2}}$

Nous obtenons :

12)

La période $t_{1/2}$ est déduite de l'étude de $\frac{1}{\sqrt{I}}$ en fonction du temps ; la densité initiale n_{eo} est obtenue par calibrage avec un système connu. Le point faible de la technique « Pulse Radiolysis » réside dans cette calibrage. Notons également qu'en absence de diagnostic direct des ions, la nature de l'ion étudié ne peut être clairement définie.

Les deux dispositifs présentés ci-dessous appartiennent à la première catégorie.

 $\underline{\text{III}} \cdot 2 \cdot 1 \cdot b \cdot a \quad \text{Flammes}^{(14)}$

Une flamme à symétrie cylindrique brûle horizontalement à pression atmosphérique. Les profils de vitesse et de température sont constants suivant l'axe de combustion pour une flamme de composition donnée. Un écorceur permet d'échantillonner une partie du plasma ; un spectromètre de masse, situé en aval de cet écorceur, permet de mesurer la concentration de l'ion étudié en fonction de la distance.

L'évolution spatiale de ni permet de calculer la vitesse de recombinaison dissociative $\alpha(T_e)$ dans le plasma à l'équilibre thermodynamique, suivant :

$$\frac{1}{n_{i}(z)} = \frac{1}{n_{i}(z_{0})} + \frac{\alpha}{v_{p}}(z - z_{0})$$
(III.13)

La vitesse du plasma est v_p . La mesure des densités ioniques absolues n'est pas triviale ; elle est compliquée par la présence des espèces dimérisées des ions étudiés. De plus, la région de la flamme où la température est constante est limitée. Toutes ces objections font que les études de RD à l'aide de flammes ont été assez marginales.

Figure 4 : Flamme

<u>III.2.1.b. b. FALP</u>

Cet acronyme anglo-saxon signifie "Post Décharge en Ecoulement avec Sonde de Langmuir ⁽¹⁵⁻²⁾ ". Dans cette technique, la sonde est mobile et permet de mesurer la densité électronique le long du plasma. S'y adjoint un spectromètre de masse fixe, pour déterminer la nature des ions étudiés.

L'ionisation est créée et maintenue en amont de l'écoulement par une décharge micro-onde. Suivant l'expérience menée, le gaz porteur (buffer) est l'hélium ou l'argon. Les électrons peuvent être thermalisés ou non. Un système de refroidissement ou de chauffage permet de travailler dans la gamme de température $80^{\circ}K \leq T_g \leq 600^{\circ}K$. Le coefficient de vitesse $\alpha(T_e)$ est donné par :

$$\frac{1}{n_{e}(z)} = \frac{1}{n_{e}(z_{0})} + \frac{\alpha}{v_{p}}(z - z_{0})$$
(III .14)

L'écoulement gazeux est évacué de l'enceinte grâce à des pompes Roots ; ces dernières permettent de maintenir une pression d'environ 1 Torr et de minimiser les effets dus à la diffusion ambipolaire.

Un FALP, similaire à celui de Birmingham, est décrit dans le chapitre V.

<u>III.2.2</u> Mesure des sections efficaces $\sigma(E_{cm})$

La section efficace $\sigma(E_{cm})$ est une autre forme de probabilité de recombinaison. Elle est mesurée dans les dispositifs utilisant des faisceaux : Merged Beams, Storage Ring, Ion Trap. Vu le très faible nombre de collisions ions-électrons dans ce type d'expériences, la notion de température perd son sens. L'énergie relative des faisceaux E_{cm} est donc utilisée comme paramètre variable pour mesurer les sections efficaces. En fait, ces dispositifs ne permettent pas de mesurer directement $\sigma(E_{cm})$ mais $\langle \sigma(v_{rel})v_{rel} \rangle$; le calcul de $\sigma(E_{cm})$ est alors étroitement lié à la résolution de l'appareil.

III. 2. 2. a Calcul de la section efficace
$$\sigma(E_{cm})$$
 à partir de $\langle \sigma(v_{rel})v_{rel} \rangle$

De façon générale, nous avons ⁽¹⁷⁾:
$$\langle \sigma(v_{rel})v_{rel} \rangle = \int_{-\infty}^{+\infty} v_{rel} \sigma(v_{rel}) f(v_{cm}, v_{rel}) d^3 v_{rel}$$
 (III .15)

$$v_{cm} = \left(\frac{2E_{cm}}{\mu}\right)^{1/2} et \qquad \mu = \frac{m_i m_e}{m_i + m_e} \approx m_e$$
(III .16)

$$v_{rel} = [(v_{II} - v_{cm})_2 + v_{\perp}^2]^{1/2}$$
 (III .17)

et f(vcm, vrel) fonction de distribution maxwellienne des vitesses en coordonnées cylindriques :

$$f(v_{cm}, v_{rel})d^3v_{rel} = \left(\frac{m_e}{2\pi kT_{II}}\right)^{1/2} \left(\frac{m_e}{2\pi kT_{\perp}}\right) e^{-\frac{m_e(v_{II}-v_{cm})_2}{2kT_{II}}} e^{-\frac{m_e(v_{\perp}-v_{cm})_2}{2kT_{\perp}}} 2\pi v_{\perp} dv_{\perp} d$$

Des procédures mathématiques - paragraphes (III. 2. 2. b) et (III. 2. 2. c. d)- permettent de calculer $\sigma(E_{cm})$ à partir de $\langle \sigma(v_{rel})v_{rel} \rangle$. Elles impliquent la connaissance de kT_{II} et kT_{\perp} , respectivement températures longitudinale et transversale du faisceau électronique. Ces deux derniers paramètres sont liés à la résolution en énergie.

III. 2. 2. b "Single Pass Experiments : Merged, Inclined, Crossed Beams"

Le terme « Single Pass » signifie que les ions n'interagissent qu'une seule fois avec les électrons avant détection. Par opposition, les « Storage Ring » constituent des « Multipass Experiments » : les ions effectuent de multiples passages dans l'anneau, et à chaque passage, peuvent se recombiner avec les électrons.

La technique des Merged Beams est largement détaillée dans le chapitre IV. Ne seront donc évoqués que les « Inclined » et « Crossed Beams ». Quelle que soit la technique utilisée, la variance de la fonction de distribution $f(v_{cm}, v_{rel})$ est faible devant v_{cm} :

$$\Delta E_{e} \ll E_{cmmin} \qquad (III .19)$$

La résolution en énergie est très grande ; la dispersion de l'énergie électronique ΔE_e est très inférieure à l'énergie minimale E_{cm} mesurée. La relation exacte (III. 15) peut alors s'écrire :

$$\langle \sigma(v_{rel})v_{rel} \rangle = \sigma(E_{cm})v_{cm}$$
 (III .20)

III. 2. 2. b. a "Inclined Beams^{$$(18)$$}"

avec

Les faisceaux ionique et électronique sont respectivement produits au sein d'une source et d'un canon à électrons. Après avoir été préalablement collimatés, ils interagissent suivant un angle de confluence θ (=10°). Les neutres, issus de l'interaction (RD), sont totalisés sur un détecteur à scintillation (ou à barrière de surface) ; les ions et les électrons sont collectés dans des coupes de Faraday.

Pour une énergie relative des faisceaux E_{cm} donnée, telle que $E_{cm} >> \Delta E_e$, la section efficace de RD est donnée par :

$$\sigma(E_{cm})v_{cm} = \frac{C_{n}e_{2}v_{i}v_{e}Fsin\theta}{I_{i}I_{e}}$$
(III.21)

C_n : taux de comptage des espèces neutres produites par unité de temps

I_i, I_e : courant d'ions et d'électrons

 v_i , v_e : vitesse des ions et des électrons

 v_{cm} : vitesse relative des deux faisceaux dans le référentiel barycentrique $v_{cm} = \vec{v}_i - \vec{v}_e$

F : facteur de forme

Un des handicaps de la technique « Inclined Beams » provient du faible rapport signal sur bruit ; le temps d'accumulation pour obtenir une précision tolérable sur les sections efficaces est très long. De plus, l'énergie relative minimale E_{cm} (min) des faisceaux est limitée par la valeur de l'angle θ -paragraphe (IV. 2. 1) -. L'usage de cette technique pour l'étude de la RD, où il est nécessaire d'accéder à des énergies E_{cm} de 10^{-2} eV, n'est pas très adapté.

III.2.2.b.b "Crossed Beams"

Les faisceaux ionique et électronique interagissent à angle droit. Les sections efficaces de RD sont déterminées à l'aide de l'émission radiative des produits neutres de RD électroniquement excités ⁽¹⁹⁻²⁰⁾. Ces sections efficaces sont donc relatives à un canal donné et contribuent à la section efficace totale selon un rapport de branchement f.

Figure 6 : Crossed Beams Pour $E_{cm} >> \Delta E_e$, nous avons :

$$\sigma_{\rm f}(E_{\rm cm})v_{\rm cm} = \frac{4\pi}{\rm YQ} \frac{\rm C_{\rm phot}e^2 v_i v_e F}{\rm I_i I_e}$$
(III .22)

C_{phot} : taux de comptage des photons émis par unité de temps

Y : angle solide sous lequel la région d'interaction est perçue depuis le détecteur

Q : efficacité quantique du photomultiplicateur

Les "Crossed Beams" souffrent des mêmes handicaps que les "Inclined Beams" : faible rapport signal sur bruit, gamme étroite d'énergies relatives E_{cm} accessibles. A ces objections s'ajoutent d'autres difficultés :

• des photons émis par la cathode du canon à électrons peuvent être indûment détectés

• l'analyse des données peut être compliquée par d'éventuelles cascades radiatives des neutres électroniquement excités.
• le faisceau électronique est confiné à l'aide d'un champ magnétique B en raison de la faible valeur de l'énergie cinétique E_e des électrons. Ce champ magnétique induit un champ électrique de Lorentz ; l'effet Stark résultant provoque un mélange des configurations électroniques des neutres. L'émission photonique est perturbée.

III. 2. 2. c "Multipass Experiments : anneau de stockage (Storage Ring)"

La technique des "Storage Ring" a été récemment appliquée à l'étude de la RD. Bien qu'elle soit similaire par de nombreux aspects à celle des "Merged Beams", elle présente de multiples avantages, comme la possibilité de manipuler des faisceaux d'ions sur leurs niveaux électronique et vibrationnel fondamentaux. De plus, ces faisceaux d'ions sont bien plus intenses que ceux des "Merged Beams". Cette technique est particulièrement bien adaptée à l'étude des ions moléculaires dotés d'un moment dipolaire permanent ; ce type d'ions peut se relaxer par transitions radiatives spontanées.

Mise à part l'injection des ions dans l'anneau, une expérience se décompose en deux étapes : refroidissement translationnel des ions par des électrons (electron cooling), puis mesure de $\langle \sigma(v_{rel})v_{rel} \rangle$ à une énergie relative E_{cm} donnée.

La figure 7 présente le "Storage Ring" CRYRING de Stockholm. Comme toutes les installations existantes, elle est constituée :

- d'une source d'ions créés par impact électronique (MINIS)
- d'un accélérateur
- d'un injecteur d'ions
- d'un système d'accélération radiofréquence (RF) monté sur l'anneau
- d'un système de diagnostic du faisceau d'ions (Intensité)

• d'un « Electron Cooler »⁽²¹⁾ constitué d'un canon à électrons, d'une région d'interaction (l=1m) et d'un collecteur d'électrons. La trajectoire des électrons doit être tangente à celle des ions.

• d'un détecteur de neutres

Figure 7 : "Storage Ring" de Stockholm

III.2.2.c.a «Electron Cooling»

Cette étape permet aux ions de se relaxer en énergie ; ceux vibrationnellement très excités sont détruits par collision avec le gaz résiduel. La phase d' "Electron Cooling " permet surtout d'augmenter l'intensité du faisceau donc sa durée de vie.

Les ions sont thermalisés par les électrons ce qui rend l'énergie relative E_{cm} nulle. Pour cela, les électrons exercent une force dynamique (Drag Force ⁽²²⁾) sur les ions, telle que :

$$\vec{F}(\vec{v}_{i}) = -4\pi \left(\frac{Ze_{2}}{4\pi\epsilon_{0}}\right)^{2} \frac{n_{e}L_{c}}{m_{e}} \int f_{(\vec{v}_{e})} \frac{(\vec{v}_{i} - \vec{v}_{e})}{\left|\vec{v}_{i} - \vec{v}_{e}\right|^{3}} d_{3}v_{e}$$
(III .23)

Le nombre de charges positives de l'ion est Z ; le logarithme de Coulomb est $L_{c.}$ La fonction de distribution des vitesses est $f(\vec{v}).$

La friction dynamique due aux collisions de Coulomb augmente la densité de l'espace des phases du faisceau d'ions. Cette compression permet d'injecter de nouveaux ions dans l'anneau en plus de ceux déjà présents. Comme le temps d'acquisition des données δt est limité par la durée de vie du faisceau, il faut que de nombreuses recombinaisons puissent avoir lieu dans cet intervalle de temps. Un maximum d'ions stockés dans l'anneau est donc nécessaire ($N_{io} \sim 10^8$ ions). Ce fait constitue une des différences essentielles vis à vis du "Merged Beams" où les courants d'ions sont constants et typiquement de l'ordre de 10^{-10} A. Dans cette dernière expérience, le temps d'acquisition des données va de quelques minutes à quelques heures.

<u>III.2.2.c.b</u> Mesure de $\langle \sigma(v_{rel})v_{rel} \rangle$

L'énergie des électrons est modulée entre $E_e = E_{cool} = \frac{m_e}{m_i} E_i$ ($E_{cm} = 0$) et E_e telle que la

mesure soit effectuée à $E_{cm} = \left[\sqrt{E_e} - \sqrt{E_{cool}}\right]^2$. Cette modulation de quelques Hertz permet de maintenir constant le terme E_{cool} en empêchant une dérive de l'énergie des ions. Elle permet également de s'affranchir du signal parasite B qui provient des réactions d'échanges de charges entre les ions et le gaz résiduel. En effet, bien que le "Storage Ring" soit pompé en ultravide, un gaz résiduel y demeure.

Le coefficient $\langle \sigma(v_{rel})v_{rel} \rangle$ est donné par ^{(17),(23)} :

$$\left\langle \sigma(v_{rel})v_{rel} \right\rangle = \frac{R_{corrigé}}{n_e} \frac{L}{l} = \frac{S(\delta t)}{N_i(t)\delta t} \frac{1}{n_e} \frac{L}{l}$$
 (III .24)

 $R^{corrigé}$ est le taux de destruction par ion et par unité de temps. La destruction de l'ion est due au processus étudié, le facteur R est corrigé du "background".

N_i (t) est le nombre d'ions présents dans l'anneau à l'instant t tel que :

$$N_{i}(t) = N_{i0}e^{-t/\tau} = \frac{I_{i}(t)}{Zef_{(s)}}$$
 (III .25)

Le nombre initial d'ions est N_{io} tandis que τ représente la durée de vie du faisceau d'ions. La fréquence de circulation des ions dans l'anneau est f_(s). Le nombre de neutres produits pendant l'intervalle de temps δt par le processus étudié est S(δt). Cette grandeur est mesurée et donnée par :

$$S(\delta t) = \int_{\delta t} R_{\text{corrige}} N_i(t) dt$$
 (III .26)

La densité électronique est telle que

 $n_{e} = \frac{I_{e}}{Sev_{e}}$ (III .27)

La section droite du faisceau d'électrons est S tandis que la circonférence de l'anneau est L et la longueur de la région d'interaction l.

La résolution joue un rôle fondamental dans le calcul des sections efficaces $\sigma(E_{cm})$ à partir de $\langle \sigma(v_{rel})v_{rel} \rangle$.

Dans un "Storage Ring" classique, les électrons sont produits au sein de l'"Electron Cooler". Les caractéristiques de ce dernier définissent les dispersions longitudinale et transversale de l'énergie des électrons. Ces dispersions kT_{II} et kT_{\perp} , liées à la résolution, sont données par ⁽²⁴⁾:

$$\Gamma_{\perp} = T_{cathode}$$
 (III .28)

$$T_{II} = \frac{kT_{cathode}^{2}}{4E_{cool}} + \left(\frac{2m_{e}c^{2}r_{e}}{k}\right)\left(\frac{4\pi n_{e}}{3}\right)^{1/3}$$
(III .29)

Le rayon classique de l'électron est re.

Le terme kT_{II} (~10⁻⁴ eV) est négligeable devant kT_{\perp} car l'accélération des électrons entre $E_e = E_{cool}$ et $E_e = \left[\sqrt{E_{cm}} + \sqrt{E_{cool}}\right]^2$ provoque une compression de la fonction de distribution longitudinale. Le terme kT_{\perp} est imposé par la température de la cathode ; il vaut environ 10⁻¹ eV. La résolution d'un "Storage Ring" classique est donc $\Delta E_e \sim 10^{-1}$ eV.

Un processus, basé sur la décompression adiabatique du faisceau d'électrons due à une diminution du champ magnétique B $^{(25)}$, permet de réduire la dispersion transversale d'un facteur 10. La résolution devient $\Delta E_e \sim 10^{-2} \ eV$.

<u>III. 2. 2. c. d</u> Calcul de la section efficace $\sigma(E_{cm})$

Dans le cas des "Storage Rings", une procédure de calcul plus sophistiquée que celle des "Single Pass Experiment" est employée. La relation générale (III. 15) est reprise, tout en tenant compte du fait que $kT_{II} \ll kT_{\perp}$ ⁽²⁶⁾.

$$f(v_{cm}, v_{rel})d^{3}v_{rel} = f(v_{\perp})2\pi v_{\perp}dv_{\perp}$$

$$= \left(\frac{m_{e}}{2\pi kT_{\perp}}\right)e^{-\frac{m_{e}v_{\perp}^{2}}{2kT_{\perp}}}2\pi v_{\perp}dv_{\perp} \qquad (III .30)$$

$$= \frac{1}{kT_{\perp}}e^{-\frac{E_{\perp}}{kT_{\perp}}}dE_{\perp} = f_{(E_{\perp})}dE_{\perp}$$

Il est possible de négliger v_{II} devant v_{cm} ; nous obtenons :

$$v_{rel} = (v_{cm}^2 + v_{\perp}^2)^{\frac{1}{2}}$$
 (III.31)

$$E_{rel} = E_{cm} + E_{\perp}$$
(III.32)

$$\langle \sigma(v_{\rm rel})v_{\rm rel} \rangle = \int_{0}^{\infty} f(E_{\perp})\sigma(E_{\perp}+E_{\rm cm})v_{\rm rel}(E_{\perp}+E_{\rm cm})dE_{\perp}$$
 (III)

.33)

Il s'agit d'une intégrale de corrélation, qui par transformée de Fourier, donne :

$$\sigma(v_{cm}) = \frac{1}{v_{cm}} F^{-1}\left(\frac{F_{(\alpha)}}{F_{(f)}^*}\right)$$
(III.34)

III. 2. 2. d Piège à ions ⁽²⁷⁻²⁸⁾ ("Ion Trap")

Cette technique consiste à confiner des ions pendant des durées importantes pour qu'ils soient relaxés électroniquement et rovibrationnellement. Des électrons d'énergie E_{cm} sont alors injectés dans le piège et se recombinent avec les ions présents. Les sections efficaces de RD peuvent être mesurées.

Le piège est physiquement délimité par trois électrodes dont une est constituée d'hyperboloïdes de révolution. Le confinement radial est assuré par un champ magnétique B

suivant l'axe des z. Le confinement longitudinal est assuré par un champ électrique E dont le potentiel est donné par :

$$V = V_0 \frac{(r^2 - 2z^2)}{(a^2 + 2b^2)}$$
(III .35)

Le potentiel cavité est V_o . Les coordonnées cylindriques sont r et z tandis que les grandeurs géométriques a et b sont telles que 2a = 1, 25 cm

2b = 0, 76 cm.

La fréquence d'oscillation harmonique des ions dans le potentiel V est :

$$v_{z} = \left(\frac{ZeV_{0}}{\pi^{2}m_{i}(a^{2}+2b^{2})}\right)^{1/2}$$
(III .36)

Le nombre de charges positives de l'ion est Z.

Une température cinétique T_i des ions est caractéristique d'une distribution maxwellienne des énergies cinétiques. Les électrons sont injectés dans le piège suivant l'axe des z. Ils sont produits à l'aide d'un canon à électrons à haute résolution en énergie ($\Delta E_e \sim 40 \text{ meV}$) et sous une intensité typique $I_e \sim 10^{-9}$ A. La résolution du canon limite la gamme d'énergies auxquelles les sections efficaces sont mesurables ($E_{cmmin} = 40 \text{ meV}$). Ces dernières sont données par :

$$\sigma(E_{cm}) = \frac{eA}{I_e} \left[\frac{1}{\delta t} ln \left(\frac{N_{i0}}{N_{i\delta t}} \right) - \frac{1}{\tau} \right]$$
(III.37)

A est une grandeur géométrique telle que $A=2\pi \frac{\int j_i(r)rdr \int j_e(r)rdr}{\int j_i(r)j_e(r)rdr}$

(III .38)

Les densités radiales de courant ionique et électronique sont j_i et j_e.

La durée de l'interaction ions-électrons est δt .

Le nombre initial d'ions est N_{io} tandis que le nombre d'ions demeurant dans le piège après interaction est $N_{i\delta t}$.

La période de décroissance naturelle des ions est τ (transferts de charges, diffusion, évaporation). Un vide poussé (P ~ 10⁻⁹ Torr) permet de minimiser cette décroissance.

Le nombre d'ions est mesuré de façon non destructive. En raison d'un facteur A difficile à évaluer, les sections efficaces mesurées sont calibrées sur celles d'un système connu ; elles sont donc relatives.

Figure 8 : "Ion Trap"

<u>III. 3 - Relation entre</u> $\sigma(E_{cm})$ et $\alpha(T_e)$

La relation entre la section efficace σ et le coefficient de vitesse α est donnée par :

$$\alpha = \int v_{cm} \sigma(v_{cm}) f_i(v_i) f_e(v_e) d^3 \vec{v}_i d^3 \vec{v}_e \qquad (III. 39)$$
$$v_{cm} = \left| \vec{v}_i - \vec{v}_e \right|$$

avec :

$$f_{i} = \left(\frac{m_{i}}{2\pi k T_{i}}\right)^{3/2} e^{-\frac{m_{i}v_{i}^{2}}{2k T_{i}}}$$
(III.40)

$$f_{e} = \left(\frac{m_{e}}{2\pi k T_{e}}\right)^{3/2} e^{-\frac{m_{e}v_{e}^{2}}{2k T_{e}}}$$
(III. 41)

Les fonctions de distribution des vitesses des ions et des électrons sont respectivement f_i et f_e . Le produit de ces deux fonctions s'écrit à l'équilibre thermodynamique ($T_i = T_e$) :

$$f_{i}(v_{i})f_{e}(v_{e}) = \frac{\left(m_{i}m_{e}\right)^{3/2}}{\left(2\pi kT_{e}\right)^{3}}e^{-\frac{\left(m_{i}v_{i}^{2}+m_{e}v_{e}^{2}\right)}{2kT_{e}}} = \frac{\left(m_{i}m_{e}\right)^{3/2}}{\left(2\pi kT_{e}\right)^{3}}e^{-\frac{\mu v_{cm}^{2}}{2kT_{e}}}e^{-\frac{\left(m_{i}+m_{e}\right)v_{G}^{2}}{2kT_{e}}}$$
(III. 42)

La vitesse du centre de masse du système (ion + électron) est v_G .

Le terme $d^3\vec{v}_id^3\vec{v}_e$ est égal à $d^3\vec{v}_{cm}d^3\vec{v}_G$. De plus, nous pouvons écrire :

$$d^{3}\vec{v}_{cm} = 4\pi v_{cm}^{2} dv_{cm}$$
(III.43)

$$d^{3}\vec{v}_{G} = 4\pi v_{G}^{2} dv_{G}$$
(III. 44)

Pour obtenir finalement :

$$\alpha(T_{e}) = \frac{16\pi^{2} (m_{i}m_{e})^{3/2}}{(2\pi kT_{e})^{3}} \int_{0}^{\infty} v_{cm}^{3} \sigma(v_{cm}) e^{-\frac{\mu v_{cm}^{2}}{2kT_{e}}} dv_{cm} \int_{0}^{\infty} v_{G}^{2} e^{-\frac{(m_{i}+m_{e})v_{G}^{2}}{2kT_{e}}} dv_{G}$$
(III.45)

Soit:
$$\alpha(T_e) = \frac{8\pi\mu}{(2\pi\mu kT_e)^{3/2}} \int_{0}^{\infty} E_{cm} \sigma(E_{cm}) e^{-\frac{E_{cm}}{kT_e}} dE_{cm} \qquad (III. 46)$$

Values of $\Gamma(n) = \int_{0}^{\infty} e^{-x} x^{n-1} dx; \Gamma(n+1) = n\Gamma(n)$							
n	Г(<i>n</i>)	n	Г(л)	n	Γ(<i>n</i>)	п	۲(<i>n</i>)
1.00	1.00000	1.25	.90640	1.50	.88623	1.75	.91906
1.01	.99433	1.26	.90440	1.51	.88659	1.76	.92137
1.02	.98884	1.27	.90250	1.52	.88704	1.77	.92376
1.03	.98355	1.28	.90072	1.53	.88757	1.78	.92623
1.04	.97844	1.29	.89904	1.54	.88818	1.79	.92877
1.05	.97350	1.30	.89747	1.55	.88887	1.80	.93138
1.06	.96874	1.31	.89600	1.56	.88964	1.81	.93408
1.07	.96415	1.32	.89464	1.57	.89049	1.82	.93685
1.08	.95973	1.33	.89338	1.58	.89142	1.83	.93969
1.09	.95546	1.34	.89222	1.59	.89243	1.84	.94261
1.10	.95135	1.35	.89115	1.60	.89352	1.85	.94561
1.11	.94740	1.36	.89018	1.61	.89468	1.86	.94869
1.12	.94359	1.37	.88931	1.62	.89592	1.87	.95184
1.13	.93993	1.38	.88854	1.63	.89724	1.88	.95507
1.14	.93642	1.39	.88785	1.64	.89864	1.89	.95838
1.15	.93304	1.40	.88726	1.65	.90012	1.90	.96177
1.16	.92980	1.41	.88676	1.66	.90167	1.91	.96523
1.17	.92670	1.42	.88636	1.67	.90330	1.92	.96877
1.18	.92373	1.43	.88604	1.68	.90500	1.93	.97240
1.19	.92089	1.44	.88581	1.69	.90678	1.94	.97610
1.20	.91817	1.45	.88566	1.70	.90864	1.95	.97988
1.21	.91558	1.46	.88560	1.71	.91057	1.96	.98374
1.22	.91311	1.47	.88563	1.72	.91258	1.97	.98768
1.23	.91075	1.48	.88575	1.73	.91466	1.98	.99171
1.24	.90852	1.49	.88595	1.74	.91683	1.99	.99581
						2.00	1.00000

Figure 9 : Fonction Gamma

Lorsque les résonances dues au processus indirect sont négligeables, la section efficace $\sigma(E_{cm})$ peut se mettre sous la forme :

$$\sigma(E_{cm}) = \sigma(E_{cm0}) \left(\frac{E_{cm}}{E_{cm0}} \right)^{-\beta}$$
(III. 47)

Le coefficient de vitesse $\alpha(T_e)$ devient :

$$\alpha(T_e) = \sqrt{\frac{8kT_e}{\pi\mu}} \sigma(E_{cm0}) \left(\frac{kT_e}{E_{cm0}}\right)^{-\beta} \int_{0}^{\infty} X^{1-\beta} e^{-X} dX \qquad (III.48)$$

L'intégrale est tabulée sous le nom de fonction gamma et est présentée figure 9.

$$\alpha(T_{\rm e}) = \sqrt{\frac{8kT_{\rm e}}{\pi\mu}} \sigma(E_{\rm cm0}) \left(\frac{kT_{\rm e}}{E_{\rm cm0}}\right)^{\beta} \Gamma(2-\beta)$$
(III. 49)

III . 4 - Revue de données expérimentales

La revue ci-dessous présente des probabilités de recombinaison dissociative de systèmes autres que ceux étudiés dans ce présent mémoire.

Ions Diatomiques	α (cm ³ /s)	σ (cm ²)	Méthode	Référence
${\rm H_{2}}^{+}({\rm v})$	$3,00\ 10^{-8}\ (T_e=300^{\circ}K)$			(29)
$H_2^+(v)$	$2,30 \ 10^{-7} \ \left(\frac{300}{T_{e}}\right)^{0,40}$	$8,00\ 10^{-15}\ \left(\frac{0,1}{E_{\rm cm}}\right)^{0,92}$	MB	(30)
$H_2^+(v)$	$6,00 \ 10^{-8} \ \left(\frac{300}{T_e}\right)^{0.64}$	$1,75 \ 10^{-16} \ \left(\frac{0,5}{E_{cm}}\right)^{1,14}$	IB	(31)
${\rm H_2}^+(0)$	1,60 10 ⁻⁸ $\left(\frac{300}{T_e}\right)^{0.43}$	$4,00 \ 10^{-16} \ \left(\frac{0,1}{E_{cm}}\right)^{0.93}$	MB	(32)
$H_2^+(0)$	$8,30\ 10^{-8}\ \left(\frac{300}{T_{e}}\right)^{0,29}$	$2,50\ 10^{-15}\ \left(\frac{0,01}{E_{cm}}\right)^{0,79}$	MB	(33)
$HD^{+}(v)$	$2,30 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0,40}$	$8,00\ 10^{-15}\ \left(\frac{0,1}{E_{cm}}\right)^{0,92}$	MB	(34)
$HD^{+}(0)$	$1,50 \ 10^{-8} \ \left(\frac{300}{T_{e}}\right)^{0.59}$	9,15 10 ⁻¹⁷ $\left(\frac{0,3}{E_{cm}}\right)^{1,09}$	SR	(35)
$D_2^+(v)$	$1,55 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0,30}$	$5,50\ 10^{-15}\ \left(\frac{0,1}{E_{cm}}\right)^{0,80}$	MB	(34)
$D_2^+(v)$	$1,80\ 10^{-7}\ \left(\frac{300}{T_e}\right)^{0.35}$	$1,65\ 10^{-15}\ \left(\frac{0,43}{E_{cm}}\right)^{0.85}$	IB	(36)
D ₂ ⁺ (n=2)	9,65 $10^{-8} \left(\frac{300}{T_e}\right)^{0.75}$	$7,60\ 10^{-17}\ \left(\frac{1,00}{E_{\rm cm}}\right)^{1,25}$	СВ	(19)
D ₂ ⁺ (n=4)	$4,55 \ 10^{-8} \ \left(\frac{300}{T_e}\right)^{0.52}$	$1,70 \ 10^{-16} \ \left(\frac{0,6}{E_{\rm cm}}\right)^{1,02}$	СВ	(20)
HeH ⁺ (v=0)	$1,00\ 10^{-8}\ \left(\frac{300}{T_{e}}\right)^{0,60}$	$2,50 \ 10^{-16} \ \left(\frac{0,1}{E_{cm}}\right)^{1,10}$	MB	(90)
HeH ⁺ ($a^{3}\Sigma^{+}$)	$2,50 \ 10^{-8} \ \left(\frac{300}{T_e}\right)^{0,40}$	$3,00\ 10^{-15}\ \left(\frac{0,02}{E_{\rm cm}}\right)^{0.90}$	MB	(91)
CH^+	$1,50 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0,42}$	$4,00\ 10^{-15}\ \left(\frac{0,1}{E_{cm}}\right)^{0,92}$	MB	(37)
$\mathrm{CD}^{+}(0)$	$6,95 \ 10^{-8} \ \left(\frac{300}{T_e}\right)^{0,40}$	$1,60\ 10^{-14}\ \left(\frac{0,01}{E_{\rm cm}}\right)^{0,90}$	SR	(38)
NH^+	$4,30 \ 10^{-8} \ \left(\frac{300}{T_e}\right)^{0.50}$	$1,25 \ 10^{-15} \ \left(\frac{0,1}{E_{cm}}\right)^{1,00}$	MB	(34)
OH^+	$3,75 \ 10^{-8} \ \left(\frac{300}{T_e}\right)^{0.50}$	$1,00 \ 10^{-15} \ \left(\frac{0,1}{E_{\rm cm}}\right)^{1,00}$	MB	(39)

${\rm C_2}^+$	$3,00 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0.50}$	7,00 $10^{-15} \left(\frac{0,1}{E_{\rm cm}}\right)^{1,00}$	MB	(40)
NeHe ⁺	2,00 10^{-8} (T _e =300°K)			(41)
CN^+	$\begin{array}{r} 1,50 \ 10^{-7} \ \left(\frac{300}{T_{e}}\right)^{0.77} \\ T_{e} < 1160^{\circ} \mathrm{K} \end{array}$	$3,20 \ 10^{-14} \ \left(\frac{0,01}{E_{cm}}\right)^{1,27}$ $E_{cm} < 0,1 \ eV$	MB	Ce travail
\rm{CO}^+	$\begin{array}{c} 6,60 \ 10^{-7} \ (T_e = 273^{\circ} \text{K}) \\ 4,00 \ 10^{-7} \ (T_e = 800^{\circ} \text{K}) \end{array}$		SA	(92)
CO^+	$1,00\ 10^{-7}\ \left(\frac{300}{T_e}\right)^{0.46}$	$2,25 \ 10^{-15} \left(\frac{0,1}{E_{cm}}\right)^{0.96}$	MB	(93)
CO^+	$1,60 \ 10^{-7} (T_e = 300^{\circ} K)$		FALP	(71)
CO^+	$3,10 \ 10^{-8} \ \left(\frac{300}{T_e}\right)^{0.67}$	$1,30 \ 10^{-14} \left(\frac{0,008}{E_{\rm cm}}\right)^{1,17}$	MB	Ce travail
N2 ⁺	$1,80 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0.39}$		SA	(7)
${ m N_2}^+$	$1,78 \ 10^{-7} \ \left(\frac{300}{T_{\rm e}}\right)^{0.37}$		ST	(94)
${ m N_2}^+$	$1,80 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0.39}$	5,00 $10^{-15} \left(\frac{0,1}{E_{cm}}\right)^{1,15}$	MB	(95)
N2 ⁺ (v=0)	$2,20 \ 10^{-7}$ (T _e =300°K)		SA.LIF	(96)
N2 ⁺ (v=0)	5,00 10 ⁻⁸ $\left(\frac{300}{T_e}\right)^{0.55}$	$3,20\ 10^{-15} \left(\frac{0,02}{E_{\rm cm}}\right)^{1.05}$	MB	Ce travail
N2 ⁺ (v=0)	$2,60 \ 10^{-7}$ (T _e =300°K)		FALP	(97)
\mathbf{NO}^+	$4,10 \ 10^{-7}$ (T _e =300°K)		SA	(83)
NO^+	$4,30 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0.37}$	$2,50 \ 10^{-15} \left(\frac{0,1}{E_{\rm cm}}\right)^{1,00}$	MB	(95)
NO^+	4,00 $10^{-7} \left(\frac{300}{T_e}\right)^{0.85}$		FALP	(98)
NO ⁺ (v=0)	$1,00\ 10^{-7}\ \left(\frac{300}{T_e}\right)^{0.93}$	$2,20\ 10^{-14} \left(\frac{0,01}{E_{\rm cm}}\right)^{1,43}$	MB	Ce travail
	$1,95 \ 10^{-7} \ \left(\frac{300}{T_{\rm e}}\right)^{0,70}$			
${\rm O_2}^+$	300 <t<sub>e<1200°K</t<sub>		SA	(7)
O_2^+	$1,81 \ 10^{-7} \ \left(\frac{300}{\text{Te}}\right)^{0.63}$		ST	(99)
${\rm O_2}^+$	5,60 10 ⁻⁸ $\left(\frac{2000}{\text{Te}}\right)^{0.66}$	$1,60 \ 10^{-15} \left(\frac{0,2}{E_{\rm cm}}\right)^{1,16}$	IT	(27)

${\rm O_2}^+$	$1,95 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0,70}$	2,25 $10^{-15} \left(\frac{0,1}{E_{cm}}\right)^{1,00}$	MB	(95)
${\rm O_2}^+$	$2,00 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0.65}$ $95 < T_e < 5000^{\circ} K$		FALP	(98)
O ₂ ⁺ (v=0)	5,00 10 ⁻⁸ $\left(\frac{300}{T_{e}}\right)^{0.88}$	$2,20\ 10^{-14} \left(\frac{0,01}{E_{cm}}\right)^{1,38}$	MB	Ce travail
KrH^+	$<2,00 \ 10^{-8}(T_e=300^{\circ}K)$		FALP	(71)
KrH^+	$<1,15 \ 10^{-8}(T_e=300^{\circ}K)$		FALP	Ce travail
${\rm XeH}^+$	$<4,00\ 10^{-8}(T_e=300^{\circ}K)$		FALP	(71)
XeH ⁺	$8,30\ \overline{10^{-8}\ (T_e=300^{\circ}K)}$		FALP	Ce travail
Hg_2^+	$4,20 \ 10^{-7} \ \left(\frac{340}{T_e}\right)^{1.10}$		SA	(42)

Gaz Rares	α (cm ³ /s)	σ (cm ²)	Méthode	Référence
$\mathrm{He_2}^+$	$6,00\ 10^{-9}\ (T_e=300^{\circ}K)$		SA	(43)
$\mathrm{He_2}^+$	$5,00\ 10^{-10}\ (T_e=300^{\circ}K)$		SA	(44)
$\mathrm{He_2}^+$	$10^{-8} - 10^{-10} (T_e = 300^{\circ} K)$		SA	(45)
Ne2 ⁺	$1,80 \ 10^{-7} \ (T_e = 300^{\circ} \text{K})$		SA	(46),(49)
$\mathrm{Ne_2}^+$	$1,75 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0,49}$		SA	(47)
$\mathrm{Ne_2}^+$	$1,65 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0.43}$		SA	(48)
Ar_2^+	$6,90\ 10^{-7}\ (T_e=300^{\circ}K)$		SA,ST	(46),(49) (50),(6)
Ar_2^+	$8,00 \ 10^{-7} \ \left(\frac{300}{T_{\rm e}}\right)^{0.67}$		SA	(51)
Ar_2^+	9,10 10 ⁻⁷ $\left(\frac{300}{T_e}\right)^{0.61}$		SA	(52)
$\mathrm{Kr_{2}}^{+}$	$1,20 \ 10^{-6} \ (T_e = 300^{\circ} \text{K})$		SA	(50)
$\mathrm{Kr_2}^+$	1,60 10 ⁻⁶ $\left(\frac{300}{T_{e}}\right)^{0.55}$		SA	(53)
Xe_2^+	2,00 10^{-6} (T _e =300°K)		SA	(50),(54) (55),(56)
Xe ₂ ⁺	2,30 10 ⁻⁶ $\left(\frac{300}{T_e}\right)^{0.33}$		SA	(57)

Ions Polyatomiques	α (cm ³ /s)	σ (cm ²)	Méthode	Référence
${\rm H_3}^+$	$2,30 \ 10^{-7} (T_e = 300^{\circ} K)$		SA	(10)
H ₃ ⁺ (v=0)	$2,00\ 10^{-8}(T_e=300^{\circ}K)$		FALP	(61)
H ₃ ⁺ (v=0)	$1,80 \ 10^{-7} (T_e = 273^{\circ} K)$		Amano	(16)
H_3^+	$1,50 \ 10^{-7} (T_e = 300^{\circ} K)$		FALP	(100)
H ₃ ⁺ (v=0)	$8,00\ 10^{-8}(T_e=300^{\circ}K)$		FALP	Ce travail
H ₃ ⁺ (v=0)	$1,15 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0,65}$	$1,43 \ 10^{-16} \ \left(\frac{1}{E_{cm}}\right)^{1.5}$	SR	(101)
H ₃ ⁺ (v=0)	$1,30 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0.90}$	$1,15 \ 10^{-15} \ \left(\frac{0,02}{E_{\rm cm}}\right)^{1,40}$	MB	(102)
$\mathrm{HD_2}^+$	$2,45 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0,49}$	4,00 10 ⁻¹⁵ $\left(\frac{0,1}{E_{\rm cm}}\right)^{1,00}$	MB	(58)
D_3^+	$1,85 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0.80}$	$3,00\ 10^{-15}\ \left(\frac{0,1}{E_{\rm cm}}\right)^{1,30}$	MB	(58)
$D_3^+(0)$	$1,75 \ 10^{-8} \ \left(\frac{300}{T_e}\right)^{0.37}$	$4,00\ 10^{-15}\ \left(\frac{0,01}{E_{\rm cm}}\right)^{0.87}$	MB	(59)
$\mathrm{CH_2}^+$	8,70 10^{-7} (T _e =300°K)		MB	(40)
${ m CH_2}^+$	$2,50 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0.50}$	$6,50 \ 10^{-15} \ \left(\frac{0,1}{E_{cm}}\right)^{1,00}$	MB	(60)
CH ₃ ⁺	3,50 $10^{-7} \left(\frac{300}{T_e}\right)^{0.50}$ T _e <2000°K	$8,00 \ 10^{-15} \ \left(\frac{0,1}{E_{cm}}\right)^{1,00}$ $E_{cm} < 0,15 eV$ $3,00 \ 10^{-15} \ \left(\frac{0,1}{E_{cm}}\right)^{1,60}$ $E_{cm} > 0,15 eV$	MB	(60)
$\mathrm{CH_4}^+$	$3,50 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0.50}$ $T_e < 1000^{\circ} K$	$7,00 \ 10^{-15} \ \left(\frac{0,1}{E_{cm}}\right)^{1,00}$ $E_{cm} < 0,07 eV$ $2,80 \ 10^{-15} \ \left(\frac{0,1}{E_{cm}}\right)^{1,50}$ $E_{cm} > 0,07 eV$	MB	(60)

$\mathrm{CH_5}^+$	3,50 10 ⁻⁷ $\left(\frac{300}{T_e}\right)^{0.50}$ T _e <1000°K	$7,00 \ 10^{-15} \ \left(\frac{0,1}{E_{cm}}\right)^{1,00}$ $E_{cm} < 0,07 eV$ $2,80 \ 10^{-15} \ \left(\frac{0,1}{E_{cm}}\right)^{1,50}$ $E_{cm} > 0,07 eV$	MB	(60)
$\mathrm{CH_5}^+$	$1,10\ 10^{-6}\ \left(\frac{300}{T_{e}}\right)^{0,26}$		FALP	(61)
$\mathrm{NH_2}^+$	$3,00 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0.50}$ $T_e < 500^{\circ} K$	$\begin{array}{c} 1,50 \ 10^{-14} \ \left(\frac{0,04}{E_{cm}}\right)^{1,00} \\ E_{cm} < 0,05 eV \\ 4,50 \ 10^{-15} \ \left(\frac{0,1}{E_{cm}}\right)^{1,35} \\ E_{cm} > 0,05 eV \end{array}$	MB	(62)
$\mathrm{NH_3}^+$	3,10 10 ⁻⁷ $\left(\frac{300}{T_e}\right)^{0.50}$ T _e <2000°K	$\begin{array}{c} 1,55 \ 10^{-14} \ \left(\frac{0,07}{E_{cm}}\right)^{1,00} \\ E_{cm} < 0,09 eV \\ 3,25 \ 10^{-15} \ \left(\frac{0,2}{E_{cm}}\right)^{1,00} \\ E_{cm} > 0,09 eV \end{array}$	MB	(62)
$\mathrm{NH_4}^+$	$1,35 \ 10^{-6} \ \left(\frac{300}{T_e}\right)^{0.60}$	$5,40 \ 10^{-15} \left(\frac{0,1}{E_{cm}}\right)^{1,40}$ $E_{cm} < 0.5 eV$ $2,50 \ 10^{-16} \left(\frac{0,5}{E_{cm}}\right)^{3,43}$ $E_{cm} > 0.5 eV$	FALP MB	(15),(62)
H_2O^+	$3,15 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0.50}$ $T_e < 1000^{\circ} K$	9,00 $10^{-15} \left(\frac{0,1}{E_{cm}}\right)^{1,00}$ $E_{cm} < 0,1eV$ 3,00 $10^{-15} \left(\frac{0,2}{E_{cm}}\right)^{2,00}$ $E_{cm} > 0,1eV$	MB	(39)
H_3O^+	$2,00\ 10^{-7}\ (T_e=2100^{\circ}K)$			(63)

8				
H_3O^+	$1,30 \ 10^{-6} \ (T_e = 300^{\circ} \text{K})$		SA	(64)
$\mathrm{H_{3}O^{+}}$		$6,00 \ 10^{-14} \left(\frac{0,038}{E_{cm}}\right)^{2,90}$ $0,038 < E_{cm} < 0,11eV$ $2,75 \ 10^{-15} \ \left(\frac{0,11}{E_{cm}}\right)^{0,79}$ $0,11 < E_{cm} < 0,42eV$ $9,30 \ 10^{-16} \ \left(\frac{0,42}{E_{cm}}\right)^{2,90}$ $E_{cm} > 0,42eV$	ΙΤ	(28)
H_3O^+	7,40 $10^{-7} \left(\frac{800}{T_e}\right)^{0.50}$ 800 <t<sub>e<9000°K</t<sub>		ST	(4)
H_3O^+	$1,00 \ 10^{-6} \ (T_e = 540^{\circ} \text{K})$		SA	(65)
$\rm H_3O^+$	3,15 10 ⁻⁷ $\left(\frac{300}{T_e}\right)^{0.50}$ T _e <1000°K	9,00 $10^{-15} \left(\frac{0.1}{E_{cm}}\right)^{1,00}$ $E_{cm} < 0.1 eV$ 2,50 $10^{-15} \left(\frac{0.1}{E_{cm}}\right)^{2,00}$ $E_{cm} > 0.1 eV$	MB	(39)
D_3O^+	7,20 $10^{-7} \left(\frac{800}{T_e}\right)^{0.32}$ 800 <t<sub>e<9000°K</t<sub>		ST MB	(4),(39)
$C_2 H^+$	$2,70 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0.50}$	7,00 10 ⁻¹⁵ $\left(\frac{0,1}{E_{\rm cm}}\right)^{1,00}$	MB	(40)
HCN ⁺	$5,20 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{1.09}$	$1,00\ 10^{-13}\ \left(\frac{0,01}{E_{\rm cm}}\right)^{1,59}$	MB	Ce travail
HCO ⁺	2,90 10^{-7} (T _e =95°K) 1,10 10^{-7} (T _e =300°K)		FALP	(61)
HCO ⁺	$2,40 \ 10^{-7} \ \left(\frac{300}{\text{Te}}\right)^{0.69}$		SA	(103)
HCO ⁺	5,90 10 ⁻⁷ (T _e =110°K) 4,10 10 ⁻⁷ (T _e =210°K) 3,1 10 ⁻⁷ (T _e =273°K)		Amano	(16)
HCO ⁺	2,40 10^{-7} (T _e =300°K)		FALP	(104)

HCO^+	$1,70 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{1,20}$ $T_e < 4650^{\circ} K$	$2,70 \ 10^{-14} \ \left(\frac{0,01}{E_{cm}}\right)^{1,70}$ $E_{cm} < 0,4eV$	MB	Ce travail
$\mathrm{C_2H_2}^+$	2,70 10 ⁻⁷ $\left(\frac{300}{T_e}\right)^{0.50}$ T _e <1000°K	$7,00 \ 10^{-15} \ \left(\frac{0,1}{E_{cm}}\right)^{1,00}$ $E_{cm} < 0,1eV$ $3,00 \ 10^{-15} \ \left(\frac{0,2}{E_{cm}}\right)^{1,20}$ $E_{cm} > 0,1eV$	MB	(40)
$C_2H_3^+$	4,50 $10^{-7} \left(\frac{300}{T_e}\right)^{0.50}$ $T_e < 1000^{\circ} K$	$1,00 \ 10^{-14} \ \left(\frac{0,1}{E_{cm}}\right)^{1,00}$ $E_{cm} < 0,1 eV$ $4,20 \ 10^{-15} \ \left(\frac{0,2}{E_{cm}}\right)^{1,30}$ $E_{cm} > 0,1 eV$	MB	(40)
HCS^+	$5,00 \ 10^{-8} \ (T_e = 300^{\circ} \text{K})$		FALP	(66)
HCS^+	$5,80 \ 10^{-7} \ (T_e = 300^{\circ} \text{K})$		FALP	(67)
HCS^+	7,90 10^{-7} (T _e =300°K)		FALP	
$\begin{array}{c} N_2 H^+ \\ N_2 D^+ \end{array}$	$3,75 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0.50}$ $T_e < 300^{\circ} K$ $1,70 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{1.00}$ $T_e > 300^{\circ} K$	$6,00 \ 10^{-15} \left(\frac{0,1}{E_{cm}}\right)^{1,00}$ $E_{cm} < 0,1eV$ $2,20 \ 10^{-15} \left(\frac{0,2}{E_{cm}}\right)^{1,30}$ $E_{cm} > 0,1eV$	MB	(68)
$\mathrm{N_2H}^+$	$1,70 \ 10^{-7} \ \left(\frac{300}{T_e}\right)^{0.92}$		FALP	(61)
$\mathrm{CO_2}^+$	$3,80 \ 10^{-7} \ (T_e = 300^{\circ} \text{K})$		SA	(69)
$\mathrm{CO_2}^+$	$3,60 \ 10^{-7} \ (T_e = 300^{\circ} \text{K})$			(70)
$\mathrm{CO_2}^+$	$3,10\ 10^{-7}\ (T_e=300^{\circ}K)$		FALP	(71)
SO_2^+	$2,50\ 10^{-7}\ (T_e=300^{\circ}K)$		FALP	(72)
$\mathrm{HSO_2}^+$	$2,70 \ 10^{-7} \ (T_e = 300^{\circ} \text{K})$		FALP	(71)
$C_{3}H_{3}^{+}$	1,00 10^{-7} (T _e =300°K)		F	(73)

$\mathrm{H}_2\mathrm{F}^+$	$1,10 \ 10^{-7} \ (T_e = 300^{\circ} \text{K})$	FALP	(74)
HCO ₂ ⁺	$3,40\ 10^{-7}\ (T_e=300^{\circ}K)$	FALP	(74)
$\begin{array}{c} {C_{3}}{H_{5}}^{+} \\ {C_{6}}{H_{5}}^{+} \end{array}$	3,50 10^{-7} (T _e =300°K)	FALP	(74)
H_2CN^+	$3,50 \ 10^{-7} \ (T_e = 300^{\circ} \text{K})$	FALP	(74)
H_3S^+	$3,70 \ 10^{-7} \ (T_e = 300^{\circ} \text{K})$	FALP	(74)
H_3S^+	$5,20 \ 10^{-7} \ (T_e = 300^{\circ} \text{K})$	 FALP	(67)
HN_2O^+	$4,20\ 10^{-7}\ (T_e=300^{\circ}K)$	 FALP	(74)
$C_4H_3^+$	$6,20 \ 10^{-7} \ (T_e = 300^{\circ} \text{K})$	FALP	(74)
$C_{2}H_{5}^{+}$	7,40 10^{-7} (T _e =300°K)	FALP	(74)
$CH_3SH_2^+$	7,70 10^{-7} (T _e =300°K)	FALP	(74)
HCS_{2}^{+}	9,10 10^{-7} (T _e =300°K)	FALP	(74)
CH ₃ NH ₃ ⁺	$1,40 \ 10^{-6} \ (T_e = 300^{\circ} \text{K})$	FALP	(74)
H ⁺ .(CH ₃ OH) _{1,2,3}	8,80 10 ⁻⁷ -2,20 10 ⁻⁶ (T _e =300°K)	FALP	(74)
$H^+.(C_2H_5OH)_{1,2,3}$	1,10 10 ⁻⁶ -1,90 10 ⁻⁶ (T _e =300°K)	FALP	(74)
CH_3CNH^+	$3,30 \ 10^{-7} \ (T_e = 300^{\circ} \text{K})$	FALP	(71)
CH ₃ CHOH ⁺	3,90 10 ⁻⁷ (T_e =300°K)	FALP	(71)
C ₂ H ₅ CNH ⁺	4,70 10^{-7} (T _e =300°K)	FALP	(71)
((CH ₃) ₂ CO) ₂ H ⁺	1,40 10^{-6} (T _e =300°K)	 FALP	(71)

Agrégats ioniques	α (cm ³ /s)	σ (cm ²)	Méthode	Référence
${\rm H_5}^+$	$1,80 \ 10^{-6} \ \left(\frac{300}{T_e}\right)^{0.69}$		SA	(75)
$\mathrm{He_3}^+$	3,40 10^{-6} (T _e =80°K)			(76)

$N_2^+.N_2$	1,40 10^{-6} (T _e =300°K)	SA	(46)
$N_2^+.N_2$	2,00 10^{-6} (T _e =300°K)		(77)
$N_2^+.N_2$	$(1,00-2,00) \ 10^{-6}$ $(T_e=300^{\circ}K)$	SA	(78)
$N_2^+.N_2$	1,40 10 ⁻⁶ $\left(\frac{300}{T_{e}}\right)^{p,41}$	SA	(79)
CO ⁺ .CO	$1,30 \ 10^{-6} \ \left(\frac{300}{T_e}\right)^{0.34}$	SA	(80)
CO ⁺ .(CO) ₂	$1,90\ 10^{-6}\ \left(\frac{300}{T_{e}}\right)^{0,33}$	SA	(80)
O2 ⁺ .O2	2,30 10^{-6} (T _e =205°K)	SA	(81)
O2 ⁺ .O2	$4,20\ 10^{-6}\ \left(\frac{300}{T_{e}}\right)^{0,48}$	SA	(82)
NO ⁺ .NO	1,70 10 ⁻⁶ (T_e =300°K)	SA	(83)
H ₃ O ⁺ .(H ₂ O)	$2,50 \ 10^{-6} \ \left(\frac{300}{T_e}\right)^{0.08}$	SA	(65)
H ₃ O ⁺ .(H ₂ O) ₂	$3,00 \ 10^{-6} \ \left(\frac{300}{T_e}\right)^{0.08}$	SA	(65)
H ₃ O ⁺ .(H ₂ O) ₃	$3,60 \ 10^{-6} \ \left(\frac{300}{T_e}\right)^{0.00}$	SA	(65)
H ₃ O ⁺ .(H ₂ O) ₄	$3,60 \ 10^{-6} \ \left(\frac{300}{T_e}\right)^{0.00}$	SA	(65)
H ₃ O ⁺ .(H ₂ O) ₅	5,00 $10^{-6} \left(\frac{300}{T_e}\right)^{0.00}$	SA	(65)
$H_3O^+.(H_2O)_6$	$< 10^{-5} (T_e = 205^{\circ} K)$	SA	(65)

NH4 ⁺ .(NH3)	2,80 10 ⁻⁶ $\left(\frac{300}{T_e}\right)^{0.15}$	SA	(84)
NH4 ⁺ .(NH3)2	$2,70 \ 10^{-6} \ \left(\frac{300}{T_{e}}\right)^{0.05}$	SA	(84)
NH4 ⁺ .(NH3)3	$3,00 \ 10^{-6} \ (T_e = 200^{\circ} K)$	SA	(84)
NH4 ⁺ .(NH3)4	$3,00 \ 10^{-6} \ (T_e = 200^{\circ} K)$	SA	(84)
Na ⁺ .O ₂	5,00 10^{-6} (T _e =300°K)		(85)
Na ⁺ .CO ₂	$5,00 \ 10^{-6} \ (T_e=300^{\circ}K)$		(85)

РАН	α (cm ³ /s)	σ (cm ²)	Méthode	Référence
$C_{3}H_{3}^{+}$ Cyclopropényl	7,00 10^{-7} (T _e =300°K)		FALP	(86)
$C_{5}H_{3}^{+}$	9,00 10^{-7} (T _e =300°K)		FALP	(86)
${C_6H_6}^+$ Benzène	1,00 10^{-6} (T _e =300°K)		FALP	(86)
$C_7H_5^+$	7,00 10^{-7} (T _e =300°K)		FALP	(86)
$(C_6H_5-CH_3)^+$ Toluène	$6,50 \ 10^{-7} \ (T_e = 300^{\circ} \text{K})$		FALP	(86)
$C_{10}H_8^+$	$3,00 \ 10^{-7} \ (T_e = 300^{\circ} \text{K})$		FALP	(86)

Symboles utilisés :

- CB Crossed Beams
- **F** Flame
- FALP Flowing Afterglow Langmuir Probe
- **IB** Inclined Beams
- IT Ion Trap
- **MB** Merged Beams
- ST Shock Tube
- SA Stationary Afterglow
- **SR** Storage Ring

La revue présentée ci-dessus est un condensé de trois articles publiés par J.N Bardsley and M.A. Bondi⁽⁸⁷⁾, J.B.A. Mitchell⁽⁸⁸⁾ et Eletskii and B.M. Smirnov⁽⁸⁹⁾.

III. 5 - Conclusion

A travers ce chapitre, nous nous sommes efforcés de donner une large vision de l'étude expérimentale de la recombinaison dissociative. Un nombre impressionnant de techniques ont été employées depuis une quarantaine d'années ; il semble que la tendance actuelle soit au recentrage des activités autour des « Storage Rings » pour les ions de faibles masses, autour des FALP pour les ions plus gros. Un manque évident de données expérimentales concerne les rapports de branchement ; ces derniers sont cruciaux pour les astrophysiciens.

Dans le cadre de cette thèse, les chapitres IV et V présentent respectivement les techniques des faisceaux confluents utilisée à l'université Western Ontario (Canada) et celle du FALP mise en oeuvre à l'université Rennes 1 (France).

Bibliographie

(1) E. Zipf	J. Geophys. Rev., <u>85</u> , 4232, (1980).	
(2) N.G. Adams, C. Herd and D. Smith	J.Chem. Phys., <u>91</u> , 963, (1989).	
(3) J.L. Queffelec, B.R. Rowe, M. Morlais,	J.C. Gomet end F. Vallée	
	Plan. Sp. Sci., <u>33</u> , 263, (1985).	
(4) G.L. Ogram, Jen-Shih. Chang and R.M.	Hobson	
	Phys. RevA, <u>21</u> , 982, (1980).	
(5) A.J. Cunningham and R.V. Hobson	J. Phys. B, <u>5</u> , 1773, (1972).	
(6) A.J. Cunningham and R.V. Hobson	Phys. Rev. A, <u>185</u> , 98, (1969).	
(7) F.J. Mehr and M.A. Biondi	Phys. Rev. A, <u>181</u> , 264, (1969).	
(8) M.A.Biondi	Rev. Sci. Instr., <u>22</u> , 500, (1951).	
(9) E.P. Gray and D.E. Kerr	Ann. Phys., <u>17</u> , 276, (1962).	
(10) M.T. Leu, M.A. Biondi and R. Johnser	Phys. RevA <u>, 8</u> , 413, (1973).	
(11) T. Amano	Astrophys. J., <u>329</u> , 121, (1988).	
(12) R.E. Rebbert and P. Ausloos	J. Res. N.B.S.A, <u>76</u> , 329, (1972).	
(13) M.C. Sauer and W.A. Mulac	J. Chem. Phys. , <u>55</u> , 1982, (1971).	
(14) A.N. Hayhurst and N.R.Telford		
J. Chem. Soc. Farada	y Trans, <u>322</u> , 1999, (1974).	
(15) E. Alge, N.G. Adams and D. Smith	J. Phys. B, <u>16</u> , 1433, (1983).	
(16) T. Amano	J.Chem. Phys., <u>92</u> , 6492, (1990).	
(17) M. Larsson, M.Carlson, H. Danared, L	. Broström, S. Mannervik	
and G. Sundström	J. Phys. B <u>, 27</u> , 1397, (1994).	
(18) B. Peart and K.T. Dolder	J. Phys. B, <u>7</u> , 1948, (1974).	
(19) M. Vogler and G.H. Dunn	Phys. Rev. A, <u>11</u> , 1983, (1975).	
(20) R.A. Phaneuf, D.H. Crandall and G.H.	Dunn Phys. Rev. A, <u>11</u> , 528, (1975).	
(21) T. Tanabe, K. Noda, T. Honna, M. Koo	laira, K. Chida, T. Watanabe, A. Noda	
S. Watanabe, A. Mizobuchi, M. Yos	hizawa, T. Katayama and H. Muto	
Nucl. Instr. Meth. Phy	ys. Res. A <u>, 307</u> , 7, (1991).	
(22) H. Danared Nucl. Instr. Meth. Phy	ys. Res. A, <u>335</u> , 397, (1993).	
(23) T. Quinteros, H. Gao, D.R. Dewitt, R.	Schuch, M. Pajek, S. Asp and Dz. Belkic	
	Phys. Rev. A, <u>51</u> , 1340, (1995).	
(24) H. Poth	Phys. Rep., <u>196</u> , 135, (1990).	
(25) H. Danared, G. Andler, L. Bagge, C.J.	Herrlander, J. Hilke, J.Jeansson	
A. Kallberg, A. Nilsson, A. Paal, K	.G. Rensfelt, U. Rosengard, J. Starker	
and M. af Ugglas	Phys. Rev. Letters, <u>72</u> , 3775, (1994).	
(26) J.R. Mowat, H. Danared, G. Sundströn	n, M. Carlson, L.H. Andersen	
L. Vejbyl-Christensen, M. af Uggla	s and M. Larsson	
	Phys. Rev. Letters, <u>74</u> , 50, (1995).	
(27) F. L Walls and G.H. Dunn	J. Geophys. Res., <u>79</u> , 1911, (1974).	
(28) R.A. Heppner, F. L. Walls, W. T. Ams	trong and G.H. Dunn	
	Phys. Rev. A, <u>13</u> , 1000, (1976).	
(29) K.B. Persson and S.C. Brown	Phys. Rev., <u>100</u> , 729, (1955).	
(30) D. Auerbach, R. Cacak, R. Caudano, T	D. Gaily, C.J. Keyser, J.WMc Gowan,	
J.B.A Mitchell and S.F.J. Wilk	J.Phys.B, <u>10</u> , 3797, (1977).	
(31) BPeart and K.T. Dolder	J.Phys. B, <u>7</u> , 236, (1974).	
(32) H. Hus, F.B. Yousif, C. Noren, A. Sen	and J.B.A Mitchell	
	Phys. Rev. Lett., <u>60</u> , 1006, (1988).	

(33) P. Van der Donk, F.B. Yousif, J.B.A. Mitchell and A. P. Hickman Phys. Rev. Lett., 67, 42, (1991). (34) J. Wm. Mc Gowan, P.M.Mul, V.S. D'Angelo, J.B.A. Mitchell, P. Defrance Phys. Rev. Lett., 42, 373, (1979). and H.R. Froelich (35) P. Forck, M. Grieser, D. Habs, A. Lampert, R. Repnow, D. Schwalm, A. Wolf and D. Zajfman Phys. Rev. Lett., 70, 426, (1993). (36) B. Peart and K.T. Dolder J. Phys. B, <u>6</u>, 359, (1973). (37) J.B.A. Mitchell and J. Wm. Mc Gowan Ap. J., <u>222</u>, 77, (1978). (38) P. Forck, C. Broude, M. Grieser, D. Habs, J. Kenntner, J. Liebmann, R. Repnow D. Schwalm, A. Wolf, Z. Amitay and D. Zajfman Phys. Rev. Lett., 72, 2002, (1994). (39) P.M Mul, J. Wm. Mc Gowan, P. Defrance and J.B.A. Mitchell J. Phys. B, 16, 3099, (1983). (40) P.M. Mul and J.Wm. Mc Gowan Ap. J., 237, 749, (1980). (41) P. Lukac, I. Trrnovee and O. Mikus Proc.8th Intern. Conf. Phys. Elect. Atom. Coll. Belgrade, 893, (1973). J. Phys. B, 14, 4719, (1981). (42) E.J. Vidya and M.A. Biondi (43) R.D. Thomas, R. Hackman and J.J Lennon Proc. 7th Intern. Conf. Phenon. Ionized Gases Belgrade, 27, (1966). (44) J. Berlande, M. Cheret, R. Deloche, A. Gonfalone and C. Manus Phys. Rev. A, 1, 887, (1970). (45) T. Maruyama, Y. Ichikawa, R.D. Hobson, S. Teii, T. Kaneda and J.S. Chang IEE Japan Proc. Symp., 2, 1, (1981). Phys. Rev., 76, 1697, (1949). (46) M.A. Biondi and S.C Brown Phys. Rev., 181, 271, (1969). (47) J. Philbrick, F.J. Mehr and M.A. Biondi (48) L. Frommhold, M.A. Biondi and F.J. Mehr Phys. Rev., 165, 44, (1968). (49) O. Mikus and P. Lukac Proc. 4th. ESCAMPIG Essen, C 37, 89, (1978). (50) H.J. Oskam and V.R. Mittelstadt Phys. Rev., <u>132</u>, 1445, (1963). (51) F. J Mehr and M.A. Biondi Phys. Rev., <u>176</u>, 322, (1968). (52) Y.J. Shui and M.A. Biondi Phys. Rev.A, 17, 868, (1978). Phys. Rev.A, <u>16</u>, 1817, (1977). (53) Y.J. Shui and M.A. Biondi (54) J.M. Richardson Phys. Rev., <u>82</u>, 318, (1951). Phys. Rev., 88, 895, (1952). (55) J.M Richardson (56) J.J.Lennon and M.C. Sexton J. Electr. Contr., <u>4</u>, 493, (1958). (57) Y.J. Shui and M.A. Biondi Phys. Rev. A, <u>15</u>, 494, (1977). (58) J.B.A Mitchell, C.T. Ng, J.L. Forand, R. Janssen and J. Wm Mc Gowan J. Phys. B, 17, 909, (1984). (59) P. Van der Donk, F.B. Yousif and J.B.A. Mitchell Phys. Rev. A, 43, 5971, (1991). (60) P.M. Mul, J.B.A. Mitchell, V.S. D'Angelo, P. Defrance, J. Wm. Mc. Gowan and H.R. Froelich J.Phys. B, 14, 1353, (1981). J. Chem. Phys., <u>81</u>, 1778, (1984). (61) N.G. Adams, D. Smith and E. Alge Résultats non publiés (62) P.M. Mul (63) J.A. Green and T.M. Sugden Proc. 9th Symp. Combust. Pittsburgh, 607, (1963). (64) M.A.Biondi and M.T.Leu Communication Privée (1970). (65) M.T. Leu, M.A. Biondi and R. JohnsonPhys. Rev. A, 7, 292, (1973). (66) T.J. Millar, N.G. Adams, D. Smith and D.C. Clary Mon. Not. R. Astrom. Soc. ,216, 1025, (1985). (67) H. Abouelaziz, J.L Queffelec, C. Rebrion, B.R. Rowe, J-C Comet and A. Canosa

	Chem. Phys. Lett., <u>194</u> , 263, (1992).			
(68) P.M. Mul and J. Wm. Mc Gowan	Ap. J., <u>227</u> , 157, (1979).			
9) C.S. Weller and M.A. Biondi Phys. Rev. Lett., <u>19</u> , 59, (1967).				
(70) J.B. Hasted, M.R. Mahdavi and G.L. Awad				
Proc. 7th. Intern. Conf. Phys. Elect.	Atom. Coll. Amsterdam, 999, (1971).			
(71) M. Geoghegan, N.G. Adams and D. Sr	nith J. Phys. B, <u>24</u> , 2589, (1991).			
(72) D. Smith Communication personnelle (1988).				
(73) S.M. Graham and J.M. Goodings				
Int. J. Mass. Spectron. Ion. Proc., <u>56</u>	, 205, (1984).			
(74) N.G. Adams and D. Smith	Chem. Phys. Lett., <u>144</u> , 11, (1988).			
(75) J.A Mac Donald, M.A. Biondi and R. J	ohnson			
	Planet. Space. Sci., <u>32</u> , 651, (1984).			
(76) J.B. Gerardo and M.A. Gusinov	Phys. Rev. A, <u>3</u> , 255, (1971).			
(77) R. Hackam	Planet. Space Sci., <u>13</u> , 667, (1965).			
(78) W.H Kasner and M.A. Biondi	Phys. Rev., <u>137</u> , 317, (1965).			
(79) M. Whitaker, M.A. Biondi and R. Johr	nson Phys. Rev. A, <u>24</u> , 743, (1981).			
(80) M. Whitaker, M.A. Biondi and R. Johr	nson Phys. Rev. A, <u>23</u> , 1481, (1981).			
(81)W. H Kasner and M.A. Biondi	Phys. Rev., <u>174</u> , 139, (1968).			
(82) J.L. Dulaney, M.A. Biondi and R. John	son Phys. Rev. A, <u>37</u> , 2539, (1988).			
(83) C.S. Weller and M.A. Biondi	Phys. Rev., <u>172</u> , 198, (1968).			
(84) C.M Huang, M.A. Biondi and R. John	nson Phys. Rev. A, <u>14</u> , 984, (1976).			
(85) G.E. Keller and R.A. Beyer	J. Geophys. Res., <u>76</u> , 289, (1971).			
(86) H. Abouelaziz, J-C. Gomet, D. Pasque	rault, B.R. Rowe and J.B.A. Mitchell			
	J. Chem. Phys. , <u>98</u> , 1, (1993).			
(87) J.N. Bardsley and M.A. Biondi				
Adv. Atom. Molec. Phys. ,Ed : D.R.	Bates and I. Esterman , (NY, <u>6</u> , 1), (1970).			
(88) J.B.A. Mitchell	Phys. Rep., <u>186</u> , (1990).			
(89) A.V. Eletskii and B.M. Smirnov	Sov. Phys. Ups. <u>, 25</u> , 13, (1982).			
(90) F.B. Yousif and J.B.A. Mitchell	Phys. Rev. A, <u>40</u> , 4318, (1989).			
(91) F.B. Yousif, J.B.A. Mitchell, M; Rogel	stad, A. Le Padellec, A. Canosa			
and M.I. Chibisov	Phys. Rev. A, <u>49</u> , 4610, (1994).			
(92) M. H. Mentzoni and J. Donohue	Phys. Lett., <u>26</u> A, 330, (1968).			
(93) J.B.A. Mitchell and H. Hus	J. Phys. B, <u>18</u> , 547, (1985).			
(94) A.J. Cunningham and R.M. Hobson	J.Phys. B, <u>5</u> , 2328, (1972).			
(95) P.M. Mul and J.Wm. McGowan	J.Phys. B, <u>12</u> , 1591, (1979).			
(96) E.C. Zipf	Geophys. Res. Lett., <u>7</u> , 645, (1980).			
(97) A. Canosa, J.C. Gomet, B.R. Rowe and	J.L. Quefellec			
	J. Chem. Phys., <u>94</u> , 7159, (1991).			
(98)P. Spanel, L. Dittrichova and D. Smith				
Int. J. J	Mass Spectrom. Ion Phys., 129 , 183, (1993).			
(99) A.J. Cunningham and R.M. Hobson	J.Phys. B, <u>5</u> , 2320, (1972).			
(100) A. Canosa, J.C. Gomet, B.R. Rowe, J	.B.A. Mitchell and J.L. Quetellec			
	J.Chem. Phys. , 97 , 1028, (1992).			
(101) G. Sundstrom, J.R. Mowat, H. Dan	ared, S. Datz, L.Brostrom, A. Filevich, A.			
Kallberg, S. Mannervik, K.G. Redsi	ELI, F. SIGRAY, MI. AI Uggias and MI.Larsson			
(102) IDA Mitchall M Descloted and DI	Science, <u>205</u> , 785, (1994).			
(102) J.D.A. MILCHEII, MI. KOGEISIAU and F.J (102) D. Conguli M.A. Diografi D. Jakara	nd LL Dulanov			
(105) D. Gangun, M.A. Bionui, K. Jonsen a	$\frac{110 \text{ J.L. Durancy}}{27 2542 (1099)}$			
	riiys. Kev., <u>57</u> , 2343, (1988).			

(104) B.R. Rowe, J.C. Gomet, A. Canosa, C. Rebrion and J.B.A. Mitchell J. Chem. Phys., <u>96</u>, 1105, (1992).

CHAPITRE IV - MERGED BEAMS

- IV. 1 Introduction
- IV. 2 Cinématique des "Merged Beams"
 - IV. 2.1 Energie relative Ecm
 - IV. 2.2 Longueur effective d'interaction
 - IV. 2.3 Section efficace
- IV. 3 Accélérateur Van De Graaff
 - IV. 3.1 Source Radiofréquence
 - IV. 3.2 Colonne d'accélération des ions
 - IV. 3. 3 Sélection des ions en masse et en énergie Electroaimant
 - IV. 3. 3. a En masse
 - IV. 3. 3. b En énergie "Feedback"
 - IV. 3. 4 Calibrage de l'énergie cinétique des ions
- IV. 4 Enceinte MEIBE 1
 - IV. 4.1 Préparation des faisceaux
 - IV. 4.1. a Faisceau ionique
 - IV. 4 . 1 . b Faisceau électronique Canon à électrons Modulation
 - IV. 4 . 1 . c Calibrage de l'énergie cinétique des électrons
 - IV. 4. 2 Superposition des deux faisceaux Analyseur trochoïdal
 - IV. 4.3 Région d'interaction
 - IV. 4.3. a Effets indésirables: divergence des faisceaux Gyration des électrons
 - IV. 4.3. b Mesure du facteur de forme F Scanners
 - IV. 4.4 Région de détection
 - IV. 4. 4. a Détection des électrons Coupe de Faraday
 - IV. 4. 4. b Détection des ions Convertisseur tension / fréquence
 - IV. 4. 4. c Détection des neutres : principe statistique de Poisson
- IV. 5 Résolution du Merged Beams : ΔE_{cm}
 - IV. 5 . 1 Dispersion de l'énergie cinétique réduite des ions ΔE_+
 - IV. 5 . 2 Dispersion de l'énergie cinétique des électrons ΔE_e
 - IV. 5 . 3 Angle de confluence θ et divergence $\Delta\theta$ des faisceaux
 - IV. 5 . 3 . a Evaluation de $\boldsymbol{\theta}$
 - IV. 5 . 3 . b Evaluation de $\Delta \theta$
 - IV. 5. 4 Contributions relatives de ΔE_+ , ΔE_e et $\theta.\Delta\theta$ à la résolution en fonction de l'énergie relative E_{cm}
- IV. 6 Conclusion

IV. 1 - Introduction

Ce chapitre est entièrement consacré à la description de la technique des Faisceaux Confluents ou « Merged beams ». Il nous a semblé opportun de rappeler quelques éléments de cinématique, avant de décrire l'accélérateur Van De Graaff. Armé de tous ces outils, il nous est alors possible de présenter l'enceinte MEIBE 1, acronyme anglo-saxon pour « Merged Electron - Ion Beam Experiment ».

IV. 2 - Cinématique des « Merged Beams »

IV. 2. 1 Energie relative Ecm

Dans le référentiel du centre de masse, l'énergie relative E_{cm} de deux faisceaux monoénergétiques, l'un constitué d'ions (m_i,v_i) et l'autre d'électrons (m_e,v_e) est donnée par⁽¹⁾:

$$E_{cm} = \frac{1}{2} \mu \vec{v}_{cm}^2 \qquad (IV.1)$$

 μ est la masse réduite du système (ion + électron), soit :

$$\mu = \frac{m_i m_e}{m_i + m_e} \approx m_e \tag{IV.2}$$

Dans le cas général où les deux faisceaux se croisent suivant un angle θ - angle de confluence -, la vitesse relative $v_{cm} = |\vec{v}_i - \vec{v}_e|$ est :

$$v_{cm} = \left[v_i^2 + v_e^2 - 2v_i v_e \cos \theta \right]^{1/2}$$
$$= \left[\left(\frac{2E_i}{m_i} \right) + \left(\frac{2E_e}{m_e} \right) - 2 \left(\frac{2E_i}{m_i} \right)^{1/2} \left(\frac{2E_e}{m_e} \right)^{1/2} \cos \theta \right]^{1/2}$$
(IV.3)

E_i et E_e sont respectivement les énergies cinétiques des ions et des électrons.

Posons l'énergie réduite des ions : $E_{+}=\frac{m_{e}}{m_{i}}E_{i}$ (IV .4)

Dans une expérience de "Merged Beams", l'angle θ est petit ; le développement limité $\cos\theta=1-\frac{\theta^2}{2}$ permet d'obtenir l'énergie relative :

$$E_{cm} = (\sqrt{E_+} - \sqrt{E_e})^2 + \sqrt{E_+ E_e} \theta^2 \qquad (IV .5)$$

Dans le cas de faisceaux strictement confluents ($\theta = 0$), cette énergie se réduit à :

$$E_{cm} = (\sqrt{E_{+}} - \sqrt{E_{e}})^2$$
 (IV .6)

et tend vers zéro lorsque Ee tend vers E+.

L'énergie réduite est un paramètre fixe de l'expérience tout comme E_i qui vaut 350 kiloélectronVolts. La figure 1 présente les rapports $\frac{V_{cm}}{V_i}$ en fonction de $\frac{V_e}{V_i}$. Pour $\theta = 0$, le rapport $\frac{V_e}{V_i} = 1$ correspond à une vitesse relative v_{cm} égale à zéro. Cette dernière est symétrique par rapport à $\frac{V_e}{V_i} = 1$.

Deux remarques s'imposent :

• la technique des "Merged Beams" est particulièrement bien adaptée à l'étude de la recombinaison dissociative pour laquelle des vitesses relatives v_{cm} (ou E_{cm}) faibles sont souhaitées.

• à une vitesse v_i fixée, deux valeurs de v_e donnent la même vitesse relative v_{cm} , correspondant soit à $v_e < v_i$, soit à $v_e > v_i$. En fonction de l'expérience menée, nous nous plaçons dans l'une ou dans l'autre des configurations

Figure 1 : Vitesse relative minimale en fonction de l'angle de confluence θ

IV. 2. 2 Longueur effective d'interaction Leff

Bien que la longueur physique de la région d'interaction soit L = 8,6 cm, le paramètre pertinent intervenant dans le calcul de la section efficace est la longueur effective d'interaction. Elle s'exprime en fonction de v_e et v_i :

$$L_{eff} = L(1 - \frac{V_i}{V_e}) \quad v_e > v_i$$
 (IV .7)

Pour $v_e=v_i$, il n'y a pas de collisions entre les deux faisceaux. De plus, nous remarquons que L_{eff} augmente avec v_e , donc avec v_{cm} .

IV. 2. 3 Section efficace

La section efficace de RD est la grandeur physique que les différentes théories permettent de calculer. Il est donc vital, pour tester la validité de ces dernières, de pouvoir mesurer cette section efficace $\sigma(E_{cm})$ en fonction de l'énergie relative $E_{cm}^{(1)}$.

Plaçons nous dans le cas $v_e > v_i$ et considérons un petit élément de surface rectangulaire dx dy du faisceau ionique, qui se propage suivant l'axe des z.

La densité d'ions cibles est :
$$\rho(x,y) = \frac{j_i(x,y)dxdy}{ev_i dxdy}$$
 (IV .8)

où $\frac{j_i(x,y)dxdy}{e}$ est le flux d'ions passant à travers l'élément de surface dx dy. Le flux d'électrons (projectiles) passant à travers ce même élément de surface est :

$$\phi_{e}(x,y) = \frac{j_{e}(x,y)dxdy}{e}$$
 (IV .9)

Le nombre de collisions ion - électron par unité de temps est proportionnel :

• au flux de projectiles ϕ_e

- à la densité d'ions cible ρ
- à la longueur effective d'interaction

Pour la nième recombinaison dans l'élément de volume dxdyLeff , nous avons :

$$c_n dx dy = \sigma_n \rho(x, y) \phi_e(x, y) L_{eff}$$
 (IV .10)

Le facteur de proportionnalité est la section efficace de la n_{ième} recombinaison. En intégrant sur la section totale du faisceau, nous obtenons :

$$C_n = \iint c_n dx dy = \frac{\sigma_n}{e_2 v_i} L_{eff} \iint j_i(x, y) j_e(x, y) dx dy \qquad (IV.11)$$

Soit F le facteur de forme qui a la dimension d'une surface :

$$F = \frac{\iint j_{e}(x,y)dxdy \iint j_{i}(x,y)dxdy}{\iint j_{i}(x,y)j_{e}(x,y)dxdy} = \frac{I_{e}I_{i}}{\iint j_{i}(x,y)j_{e}(x,y)dxdy}$$
(IV.12)

$$C_{n} = \frac{\sigma_{n} L_{eff}}{e^{2} v_{i}} \frac{I_{e} I_{i}}{F} = \frac{\sigma_{n} L(v_{e} - v_{i})}{e^{2} v_{i} v_{e}} \frac{I_{e} I_{i}}{F} = \sigma_{n} v_{cm} \frac{L}{e^{2} v_{i} v_{e}} \frac{I_{e} I_{i}}{F}$$
(IV.13)

L'équation (IV. 13) permet d'établir la relation d'Auerbach & $al^{(1)}$:

$$\sigma = \frac{C_n e^2}{I_i I_e L} \left| \frac{\vec{v}_i \cdot \vec{v}_e}{\vec{v}_i - \vec{v}_e} \right| F$$
(IV.14)

avec :

- C_n : taux de comptage des espèces neutres produites par unité de temps
- Ii : courant d'ions
- I_e : courant d'électrons
- F : facteur de forme
- L = 8,6 cm longueur physique de la région d'interaction
- e : quantum de charge électrique
- \vec{v}_i et \vec{v}_e : vecteurs vitesse des ions et des électrons

Nous pouvons réécrire la relation (IV. 14) en fonction des énergies E+, Ee et Ecm , soit:

$$\sigma(E_{cm}) = \frac{C_n e^2}{I_i I_e L} \left(\frac{2e}{m_e}\right)^{\sqrt{2}} \left(\frac{E_+ E_e}{E_{cm}}\right)^{\sqrt{2}} F \qquad (IV.15)$$

Dans l'expérience, les paramètres fixes sont E_+ , E_e , E_{cm} d'une part et I_i, I_e , F d'autre part. Le taux de comptage C_h est mesuré. Avant de rentrer dans une description plus approfondie de la technique des "Merged Beams", il nous a semblé opportun de décrire l'accélérateur Van de Graaff.

IV. 3 - Accélérateur Van De Graaff

L'accélérateur est représenté sur la photo n°1.

IV. 3. 1 Source radiofréquence

La source d'ions employée est montée sur le terminal d'un accélérateur Van De Graaff⁽²⁾ d'énergie 400 keV. Il s'agit d'une source radiofréquence représentée sur la figure 2. Le gaz (ou le mélange de gaz) qui permet de générer l'ion à étudier, est injecté dans une bouteille enchâssée dans deux antennes circulaires RF. Le flux de gaz, qui doit être constant, est régulé par une vanne thermomécanique⁽³⁾. Pour éviter des problèmes de claquages dus à la présence de hautes tensions, la pression dans la bouteille doit être limitée à 10 Pascal. Le champ radiofréquence de 100 Mhz et l'amplitude 250 V entretient une décharge. Les ions du plasma ainsi créés doivent être produits en quantité suffisante et doivent être dirigés vers l'entrée de la colonne d'accélération. Pour ce faire, quatre aimants permanents entourent la

bouteille et créent un champ magnétique dans lequel les électrons présents dans la décharge vont spiraler. La durée de vie de ces électrons est très prolongée ; ceci assure du même coup une survie importante des ions. Pour diriger les ions vers l'entrée de la colonne d'accélération, une électrode chargée positivement et située à l'opposé de l'entrée, crée un champ répulsif pour ces ions. Le potentiel appliqué est le potentiel d'EXTRACTION.

Sauf cas particuliers, les ions produits sont dans leur état électronique fondamental. En revanche, la présence de quelques états vibrationnellement excités n'est pas à exclure. Cette vibration dépend grandement⁽⁴⁾ :

- du potentiel d'extraction appliqué à la source
- de la pression à l'intérieur de la source.

Figure 2 : Source radiofréquence

IV. 3. 2 Colonne d'accélération des ions

La grande force de la technique des "Merged Beams" est la possibilité de créer des énergies relatives E_{cm} très faibles (qqs 10^{-3} eV) ; la seule limite est la résolution en énergie (paragraphe IV.5). Pour que le faisceau d'électrons soit aisément manipulable, ces derniers doivent posséder une énergie d'au moins 10 eV. En conséquence, l'énergie cinétique des ions doit être de l'ordre de plusieurs centaines de kilo électronvolts.

L'accélérateur Van De Graaff représenté sur la figure 3 fonctionne à potentiel constant. Les ions sont accélérés dans la colonne d'accélération située entre le terminal (source d'ions) porté à un potentiel positif et la sortie (électroaimant) portée à la masse. Cette colonne ⁽⁵⁾ est constituée de plaques équipotentielles chargées et reliées entre elles par des résistances. Ces dernières, dont l'ensemble constitue un diviseur de tension chargé de maintenir un potentiel constant entre le terminal et la sortie, créent un gradient de tension le long de la colonne. La première électrode de la colonne est l'électrode de FOCALISATION (FOCUS). Cette lentille électrostatique joue un rôle important dans la qualité du faisceau ionique car l'image de la source d'ions doit se situer en dehors de la colonne d'accélération.

La différence de potentiel entre le terminal et la sortie est entretenue par le mouvement d'un tapis transportant les charges électriques. Du côté « Sortie » de l'accélérateur se situe le « Charging Screen » (CS), fine couche d'acier inoxydable solidaire de la base de l'accélérateur mais cependant isolée électriquement de cette base. L'élément CS est porté à un potentiel positif de 20 kV. A l'opposé, côté « Terminal », se situe le « Terminal Collector Screen » (TCS) directement connecté au Terminal. Le tapis, entraîné par un moteur, se trouve en contact avec les deux éléments CS et TCS. L'élément CS, chargé positivement, attire les électrons et repousse les charges positives qui sont convoyées vers l'élément TCS via le tapis. Les électrons du Terminal sont attirés vers ces charges positives provenant de l'élément CS et peuvent se neutraliser au niveau du tapis. Le Terminal est alors chargé positivement.

IV. 3. 3 Sélection des ions en masse et en énergie - Electroaimant

Deux des caractéristiques les plus intéressantes de l'accélérateur Van De Graaff sont la possibilité de sélectionner un ion particulier et la possibilité de les produire avec une énergie cinétique bien définie.

Figure 3 : Coupe de l'accélérateur Van De Graaff

IV. 3. 3. a En masse

A la sortie de la colonne d'accélération, les ions peuvent être sélectionnés en masse⁽⁶⁾, en fonction de leur rapport e/m, à l'aide d'un électroaimant. Rappelons une relation reliant tous les paramètres dynamiques d'une particule chargée dans un champ magnétique :

$$evB = \frac{m_i v^2}{R}$$
 (IV .16)

avec v: vitesse de l'ion

- B: champ magnétique appliqué à l'ion (constant pour un ion donné)
- m_i: masse de l'ion
- R : rayon de courbure de la trajectoire circulaire suivie par l'ion (paramètre fixe).

A la sortie de l'électroaimant, une porte, dont l'axe est à 15° de celui de la colonne d'accélération, permet l'injection des ions étudiés vers les enceintes "Merged Beams".

IV. 3 . 3. b En énergie - "Feedback"

Au niveau de la porte mentionnée précédemment, deux coupes de Faraday se situent de part et d'autre de la fente de sortie de l'accélérateur ; elles permettent la mesure du courant d'ions produit (paragraphe IV. 4. 4. a). Comme le courant doit être identique dans les deux coupes, un système de « Feedback »⁽⁶⁾ ajuste en conséquence la tension du Terminal. Ainsi l'énergie cinétique des ions est parfaitement contrôlée.

IV. 3. 4 - Calibrage de l'énergie cinétique des ions

L'étude de la section efficace de RD en fonction de l'énergie relative E_{cm} requiert une connaissance parfaite de l'énergie E_i des ions. Une calibrage de cette énergie peut être obtenue à l'aide de la réaction nucléaire ${}_{19}F(p,\alpha\gamma){}_{16}O$ dont le seuil⁽⁷⁾ de réaction est parfaitement connu. Il est de (340, 46±0, 04) keV.

On bombarde une cible de fluor à l'aide de protons dont on fait varier l'énergie cinétique au voisinage du seuil de réaction (figure 4). On détecte alors le nombre de rayons γ émis en fonction du potentiel du Terminal. On réalise ainsi une calibrage, car l'énergie correspondant au point d'inflexion de la courbe est parfaitement connue (énergie seuil).

Photo n°1 : Accélérateur Van de Graaff

Photo $n^{\circ}2$: Vue d'ensemble de MEIBE 1

IV. 4 - Enceinte MEIBE 1 (Merged Electron - Ion Beam Experiment)

Le montage MEIBE 1 est représenté sur la photo n°2. L'enceinte de 150 cm de long et de 30 cm de diamètre peut être arbitrairement divisée en trois zones distinctes : la région de préparation et de mélange des faisceaux, la région d'interaction et la région de détection. L'axe de la machine est aligné suivant la composante horizontale du champ magnétique terrestre. La composante verticale est annulée par deux bobines horizontales situées sur le cadre entourant la machine. L'enceinte est continuellement pompée en ultravide par trois pompes à diffusion, elles mêmes pompées par deux primaires. La pression est inférieure à 10^{-9} Torr. La création de l'ultravide est obtenue grâce à la technique de l'étuvage et à l'utilisation d'une pompe à sublimation de Titane.

IV. 4.1 Préparation des faisceaux

IV. 4. 1. a Faisceau ionique

Le faisceau d'ions a été produit au sein de l'accélérateur Van De Graaff de 400 keV décrit précédemment. Précisons que l'énergie cinétique des ions a été fixée à 350 keV dans le cadre de ce travail. Deux paires de déflecteurs électrostatiques permettent un déplacement transversal du faisceau : horizontalement et verticalement. A l'entrée de l'enceinte, le faisceau ionique est collimaté pour avoir un diamètre $d_i = 0,75$ mm. Ensuite, pour éviter que les neutres créés dans l'accélérateur et encore présents dans le faisceau n'accèdent à la région d'interaction, une autre paire de déflecteurs provoque un déplacement horizontal du faisceau. Les neutres n'y sont pas sensibles et sont donc ainsi séparés des ions.

IV. 4. 1. b Faisceau électronique - Canon à électrons - Modulation

Parallèlement au faisceau ionique, le faisceau électronique est généré par un canon à électrons. La figure 5 représente les différents éléments qui constituent ce canon :

• Une cathode en oxyde de baryum émet les électrons. Elle est chauffée indirectement à environ 1500 ° K par un filament de tungstène. Soumis à 0,5 Ampères sous 7 Volts, ce filament émet aussi des électrons ; ces derniers, de part la géométrie de la cathode, ne peuvent s'échapper du canon.

• Une électrode de focalisation est située devant la cathode. Portée à quelques volts au dessus du potentiel de cette dernière, elle joue le rôle d'une lentille électrostatique et permet d'éviter la dispersion spatiale du faisceau. Rappelons qu'à l'entrée de l'analyseur

trochoïdal, la vitesse des électrons ne doit avoir qu'une composante longitudinale (paragraphe IV. 4. 2).

• Une anode permet l'extraction et l'accélération des électrons. Elle est portée à un potentiel positif par rapport à la cathode et détermine l'énergie des électrons dans les analyseurs trochoïdaux (figure 6). Cette énergie u doit se situer dans la gamme 20-200 eV sous peine d'avoir des électrons très difficiles à maîtriser (problèmes liés aux charges d'espace). Pour l'étude des ions moléculaires de masses élevées (\cong 30 amu), cette énergie est de l'ordre de u \cong 30 eV. Le potentiel de l'anode doit être compatible avec celui de la cathode pour que les électrons ne soient pas trop brusquement accélérés (effet de pénétration de champs).

Bien que l'enceinte soit pompée en Ultravide, un gaz résiduel y demeure. En conséquence, des espèces neutres, provenant des réactions de transferts de charges entre les ions et les molécules de gaz résiduel, peuvent être indûment totalisées comme provenant des réactions de recombinaison dissociative. Pour éviter la prise en compte de ce signal parasite B qui majore les sections efficaces $\sigma(E_{cm})$ mesurées, le faisceau électronique est modulé. Cette modulation, provoquée par une paire de déflecteurs à une fréquence du kilohertz, permet la distinction entre le signal vrai S et le signal parasite B. De plus, un choix judicieux de E_i permet de travailler dans des conditions pour lesquelles les sections efficaces d'échanges de charges sont faibles.

Figure 5 : Canon à électrons

IV. 4. 1. c Calibrage de l'énergie cinétique des électrons

La région d'interaction est délimitée par des plaques portées à la masse (figure 6). Ainsi l'énergie des électrons dans cette région est déterminée par le potentiel de la cathode ou plus exactement par un potentiel qui lui est voisin. Cette légère différence, appelée « Fonction de travail » (Workfunction), provient de différentes origines:

- de la perte d'énergie des électrons lorsqu'ils quittent la cathode (potentiel d'extraction
- de la présence de potentiels de contact entre l'alimentation de la cathode et la cathode elle-même.

L'évaluation de cette Fonction de Travail se fait comme suit : de la cinématique des "Merged Beams", on peut montrer (paragraphe IV. 2. 1) qu'à une énergie fixée des ions, correspondent deux énergies des électrons (deux potentiels Cathode). Il s'agit des cas $v_e < v_i$ et $v_e > v_i$. Pour $v_e = v_i$, l'énergie relative E_{cm} des faisceaux est nulle ; le potentiel Cathode est alors unique. Comme la section efficace $\sigma_{RDdirect(Ecm)}$ est inversement proportionnelle à E_{cm} (relation II .27), une énergie relative nulle correspond à un maximum de signal S. La

recherche systématique de ce potentiel Cathode unique permet de déduire la Fonction de Travail. Ceci est illustré par la figure 7, tirée de la thèse de P. Van der Donk.

IV. 4. 2 Superposition des deux faisceaux - Analyseur trochoïdal

La superposition des faisceaux ionique et électronique est obtenue à l'aide d'un analyseur trochoïdal⁽⁸⁻¹⁰⁾ ($\vec{E} \wedge \vec{B}$). Ce type d'analyseur est constitué de deux plaques horizontales entre lesquelles règne un champ électrique \vec{E} . Ce champ électrique est dirigé orthogonalement à l'axe de la machine, axe suivant lequel est appliqué un champ magnétique \vec{B} , d'environ 3milli Tesla. Ce champ \vec{B} est créé par quatre bobines de Helmholtz situées à l'extérieur de la machine. La trajectoire des ions dans l'analyseur trochoïdal n'est pas perturbée ; ceci est du aux faibles amplitudes des champs \vec{E} et \vec{B} appliqués relativement à la masse des ions. En revanche, les électrons, de par leur faible masse, vont effectuer une série de "sauts" -trochoïdes- à l'intérieur de l'analyseur. Le résultat, en sortie de l'analyseur, est la superposition des deux faisceaux.

Figure 7 : Calibrage de l'énergie cinétique des électrons

Le mouvement d'un électron dans des champs uniformes \vec{E} et \vec{B} est donné par :

$$m_{e}\frac{d\vec{v}}{dt} = -e(\vec{E} + \vec{v}^{A}\vec{B})$$
(IV.17)

avec

m_e : masse de l'électron

 $\vec{v}\;$: vecteur vitesse des électrons dans l'analyseur

e : quantum de charge électrique

 \vec{E} et \vec{B} : respectivement champ électrique et magnétique

Considérons un repère défini par $\vec{B}=(0,0,B)$ et $\vec{E}=(E,0,0)$ et dans lequel le vecteur vitesse à l'entrée de l'analyseur est $\vec{v}_0=(0,0,v_0)$. Les électrons entrent dans l'analyseur en (0, d, 0) et sortent en (0, 0, L).

La projection de la relation (IV. 17) suivant les axes x, y, z donne, en ayant préalablement posé $\gamma = \frac{eE}{m_e}$ et $\omega = \frac{eB}{m_e}$:

$$\frac{\mathrm{d}\mathbf{v}_{x}}{\mathrm{d}t} = \gamma + \omega \mathbf{v}_{y} \tag{IV.18}$$

$$\frac{\mathrm{d}v_{y}}{\mathrm{d}t} = -\omega v_{x} \qquad (\mathrm{IV} . 19)$$

$$\frac{\mathrm{d}v_z}{\mathrm{d}t} = 0 \text{ soit } v_z = \frac{\mathrm{d}z}{\mathrm{d}t} = \frac{z}{t} = v_o \qquad (\mathrm{IV} .20)$$

Le découplage des équations (IV. 18) et (IV. 19) s'obtient par dérivation, soit :

$$\frac{d^2 v_x}{dt^2} = \omega \frac{d v_y}{dt} = -\omega^2 v_x \qquad (IV.21)$$

$$\frac{d^2 v_y}{dt^2} = -\omega \frac{dv_x}{dt} = -\omega(\gamma + \omega v_y)$$
(IV.22)

Figure 8 : Mouvement des électrons dans l'analyseur trochoïdal Si l'on tient compte des conditions initiales $v_x=v_y=0$ à l'instant t = 0, la résolution de (IV. 21) et (IV. 22) donne :

$$v_x = \frac{\gamma}{\omega} \sin(\omega t)$$
 (IV.23)

$$v_y = \frac{\gamma}{\omega} \cos(\omega t) - \frac{\gamma}{\omega}$$
 (IV .24)

Les primitives, dans lesquelles on remplace le temps t par la relation (IV. 20), sont :

$$x = -\frac{\gamma}{\omega^2} \cos(\frac{\omega z}{v_o}) + A \qquad (IV.25)$$

$$y = \frac{\gamma}{\omega^2} \sin(\frac{\omega z}{v_0}) - \frac{\gamma z}{\omega v_0} + B$$
 (IV .26)

Les constantes A et B sont déterminées par les conditions initiales à l'instant t = 0. On doit avoir :

$$x = -\frac{\gamma}{\omega^2} + A = 0$$
 d'où $A = \frac{\gamma}{\omega^2}$ (IV .27)

$$x = \frac{\gamma}{\omega^2} (1 - \cos(\frac{\omega z}{v_o}))$$
 (IV .29)

$$y = -\frac{\gamma}{\omega^2} ((\frac{\omega z}{v_o}) - \sin(\frac{\omega z}{v_o})) + d$$
 (IV .30)

A la sortie de l'analyseur, les électrons doivent respecter les conditions x = 0 et y = 0

$$\cos(\frac{\omega L}{v_o}) = 1 \Leftrightarrow \frac{\omega L}{v_o} = 2k\pi$$
 (IV .31)

Les valeurs des champs magnétique et électrique peuvent être déduites⁽¹¹⁾ :

$$B = \frac{2k\pi v_{o}m_{e}}{eL} = \frac{2\sqrt{2}\pi\sqrt{m_{e}}\sqrt{uk}}{eL}$$
(IV.32)

$$E = \frac{4\pi ud}{e L^2} k$$
 (IV .33)

u est l'énergie cinétique des électrons à l'entrée de l'analyseur trochoïdal ; elle est définie par le potentiel de l'anode (figure 6).

A titre d'illustration, pour que des électrons d'énergie u = 30 eV fassent k = 2 sauts dans un analyseur pour lequel d = 4 cm, L = 10 cm, les champs doivent être fixés à :

$$B = 23, 2 Gauss$$

 $E = 30, 1 Volt/cm$

Une légère variation ΔE du champ électrique, autour de la valeur E nécessaire à la superposition des faisceaux, induit un déplacement horizontal du faisceau d'électrons. Un diviseur de tension, appelé « Symetry », permet d'adapter la répartition du potentiel appliqué aux plaques. Il permet un déplacement vertical du faisceau d'électrons.

Les réglages des potentiels appliqués au canon à électrons doivent être très précis. En effet, si des électrons provenant du canon heurtaient les parois de l'analyseur trochoïdal, il y aurait émission d'électrons secondaires ⁽⁸⁾ par ces parois. Ces électrons, dont les caractéristiques ne peuvent être maîtrisées, s'introduiraient alors dans la région d'interaction. Les mesures de sections efficaces ne seraient plus fiables.

IV. 4. 3 Région d'interaction

Pour obtenir finalement :

La région d'interaction est portée au potentiel de la masse pour que l'énergie des électrons y soit parfaitement stable (figure 6).

IV. 4. 3. a Effets indésirables : divergence des faisceaux, gyration des électrons Divergence des faisceaux :

La divergence des faisceaux est limitée par la longueur physique de la région d'interaction. Cette longueur L = 8,6 cm demeure grande devant les diamètres des faisceaux ($d_i = 0,75$ mm, $d_e = 3$ mm); la notion de région d'interaction garde tout son sens. La divergence du faisceau électronique est plus problématique.

Gyration des électrons :

La gyration des électrons est provoquée par la composante transversale de leur vitesse. Elle provoque une majoration de la longueur effective d'interaction donc de la section efficace $\sigma(E_{cm})$. Il faut absolument s'affranchir de cette composante transversale qui peut avoir diverses origines :

• l'inhomogénéité du champ magnétique. Elle est limitée par l'emploi de matériaux magnétiquement inertes. Le champ correctif au champ magnétique terrestre est ajustable.

• la charge d'espace $^{(12)}$ des électrons qui induit un champ électrique E_r orthogonal à l'axe du faisceau tel que :

$$E_{r} = \frac{1}{\varepsilon_{o}} \frac{\sqrt{m_{e}}}{2e} \frac{I_{e}}{\sqrt{V_{o}}} \frac{2r}{\pi d_{e}^{2}}$$
(IV.34)

avec

r : distance par rapport au centre du faisceau

d_e : diamètre du faisceau d'électrons

 V_{o} : potentiel au centre

Ce champ électrique est à l'origine d'une composante transversale de la vitesse soit :

$$\mathbf{v}_{\perp} = \frac{\mathbf{E}_{r}}{\mathbf{B}} \tag{IV. 35}$$

Cependant les faibles courants employés garantissent l'absence de charges d'espace.

Les causes de gyration sus-nommées proviennent de la région d'interaction ; elles sont largement minimisées. Encore faut-il qu'une composante transversale des électrons ne soit pas introduites en amont, soit au niveau de l'analyseur trochoïdal. Les réglages des champs E et B doivent en prémunir.

IV. 4. 3. b Mesure du facteur de forme - Scanners

Rappelons que la relation (IV. 15) donne une proportionnalité entre la section efficace $\sigma(E_{cm})$ et le facteur de forme F selon :

$$F = \frac{\iint j_{e}(x,y)dxdy \iint j_{i}(x,y)dxdy}{\iint j_{i}(x,y)j_{e}(x,y)dxdy} = \frac{I_{e}I_{i}}{\iint j_{i}(x,y)j_{e}(x,y)dxdy}$$

avec j_e et j_i respectivement densité de courant électronique et ionique.

La signification physique de F est le recouvrement des deux faisceaux. En pratique⁽¹³⁾, ce facteur de forme est mesuré à l'aide de trois scanners équidistants et alignés perpendiculairement à l'axe de la machine. De plus, ils sont décalés les uns les autres de 10° , ce qui leur permet, dans leur rotation, d'intercepter successivement les bords horizontaux et verticaux de chaque faisceau. Un traitement électronique permet ensuite d'obtenir les distributions de courant des deux faisceaux suivant les directions x et y comme indiqué sur la figure 9.

IV. 4. 4 Région de détection

La relation (IV. 15) exprime la section efficace $\sigma(E_{cm})$ en fonction de I_e, I_i et C_n. Ces trois grandeurs sont donc à mesurer.

Après la région d'interaction où les ions, électrons et neutres sont indistinctement présents, le faisceau d'électrons est séparé des ions et des neutres à l'aide d'un second analyseur trochoïdal. Un champ \vec{E}_2 est appliqué à ce dernier en sens opposé à celui \vec{E}_1 du premier analyseur. De plus, le module du champ \vec{E}_2 est le double de celui de \vec{E}_1 . Ainsi les électrons effectuent deux sauts dans le premier analyseur tandis qu'ils n'en effectuent qu'un seul dans le second. Les électrons sont alors collectés dans une coupe de Faraday. Le faisceau d'ions est ensuite séparé des neutres à l'aide de plaques déviatrices entre lesquelles est appliquée une différence de potentiel de plusieurs kiloVolts. Les ions sont également collectés dans une coupe de Faraday. Les neutres, quant à eux, poursuivent leur trajectoire rectiligne avant de heurter un détecteur à barrière de surface.

Figure 9 : Mesure du facteur de forme

IV. 4. 4. a Détection des électrons - Coupes de Faraday

Le courant d'électrons I_e requis dans la relation (IV. 15) est mesuré à l'aide d'un ampèremètre Keithley via une coupe de Faraday.

Une coupe de Faraday⁽¹⁴⁾ fonctionne comme suit : les charges électriques incidentes sont collectées sur les parois internes de la coupe. La mesure d'un courant absolu est délicate en raison d'électrons secondaires qui sont arrachés au métal lors de l'impact du faisceau incident avec les parois. On remédie à cet inconvénient en adaptant la géométrie de la coupe (angles aigus), en utilisant des matériaux à fort potentiel d'ionisation et surtout en appliquant, dans le cas d'un faisceau ionique, un potentiel négatif à l'entrée de la coupe. Cette dernière précaution empêche les électrons rétrodiffusés de s'échapper.

Le courant I_e , de par sa parfaite stabilité temporelle, ne nécessite pas de traitement particulier comme c'est le cas pour le courant ionique.

IV. 4. 4. b Détection des ions - Convertisseur tension/fréquence

Une coupe de Faraday, à laquelle on applique un potentiel négatif en entrée, permet de mesurer le courant ionique I_i .

Dans ce paragraphe, nous souhaitons souligner deux points particuliers : le problème de l'état énergétique des ions d'une part, le problème de la stabilité temporelle du faisceau ionique d'autre part.

Problème lié à l'état des ions

Bien que les ions produits au sein du Van De Graff soient sélectionnés en fonction de leur rapport e/m, le courant d'ions d'une espèce donnée est caractérisé par une distribution d'états. Ainsi dans le cas le plus général, les ions présents dans le faisceau peuvent être électroniquement et/ou rovibrationnellement excités.

Notons qu'à ce jour, seules les études de HeH^+ et CN^+ ont permis de mettre en évidence la présence d'états électroniques excités (métastables), dont le temps de vie radiatif permettait la survie dans la région d'interaction.

Supposons, pour simplifier, que les ions se répartissent suivant deux états E_1 et E_2 auxquels correspondent les courants I_{i1} et I_{i2} ainsi que les sections efficaces σ_1 et σ_2 . Seule la mesure d'un <u>courant global</u> $I_i=I_{i1}+I_{i2}$ est possible au niveau de la coupe de Faraday. Ceci implique que les sections efficaces absolues σ_1 et σ_2 ne peuvent être déterminées que si l'on connaît les

rapports $\frac{I_{i1}}{I_i}$ et $\frac{I_{i2}}{I_i}$.

L'analyse des résultats est généralement facilitée par la présence d'un seul état énergétique des ions dans le faisceau ; l'extraction et la pression dans la source sont ajustées dans ce but.

Problème lié à la stabilité temporelle du faisceau ionique

Nous avons montré (paragraphe IV. 3. 3. b) qu'un système de « Feedback » permet l'obtention d'un faisceau monoénergétique d'ions. Ce réajustement du potentiel du Terminal, rendu nécessaire par une variation momentanée de la pression dans la source, provoque une instabilité temporelle du faisceau d'ions. Pour s'affranchir des fluctuations d'intensité du faisceau, celui-ci est digitalisé grâce à un convertisseur tension/fréquence.

En pratique, le courant ionique recueilli sur la coupe de Faraday est envoyé à l'entrée d'un ampèremètre Keithley. Le signal de sortie du Keithley est proportionnel au courant d'entrée; il a une amplitude V_{in} limitée à trois Volts. La tension V_{in} est elle-même appliquée en entrée du convertisseur tension/fréquence dont le schéma est présenté figure 10.

Figure 10 : Convertisseur tension/fréquence

La fréquence du signal V_{out} , en sortie du convertisseur, est donné par :

$$f = \frac{V_{in}}{V_{ref}RC}$$
(IV .36)

Cette fréquence f est donc proportionnelle au courant I_i . Le signal V_{out} , d'amplitude normalisée, incrémente un compteur pendant un intervalle de temps T ; le nombre d'ions détectés pendant l'intervalle est $N_i(T)$.

IV. 4. 4. c Détection des neutres - principe - statistique de Poisson

Les neutres produits dans la région d'interaction, poursuivent leur trajectoire rectiligne et viennent heurter un détecteur à barrière de surface sur lequel ils sont détectés. Ce détecteur, du type ORTEC ⁽¹⁵⁾ CA-019-300-100 est présenté figure 11.

Une jonction ⁽¹⁶⁾ PN est soumise à un champ électrique régnant entre deux électrodes. Ce champ E crée dans le semi-conducteur une région dans laquelle aucun porteur de charge libre n'est présent : c'est la zone déplétée. Une particule incidente (ici neutre) entre dans la région déplétée, heurte des électrons liés et leur cède une partie de son énergie cinétique. Cette particule incidente crée autant de paires électron-trou qu'elle a d'énergie convertible; la création d'une paire requiert en moyenne 3,5 eV. Chaque élément de la paire est ensuite collecté sur les électrodes.

Figure 11 : Détecteur de neutres

Ce type de détecteur permet donc de mesurer l'énergie cinétique de la particule incidente. Pour les espèces étudiées, son efficacité quantique est voisine de l'unité. Sa résolution en énergie est donnée par la fluctuation statistique du nombre n de paires électron-trou produites
pour une particule incidente. Cette résolution varie comme $1/\sqrt{n}$ et correspond expérimentalement à une vingtaine de kilo électronvolts. Pour être convenablement détectés, les neutres doivent avoir une énergie supérieure à la résolution du détecteur.

D'après la relation (IV. 15) le taux de comptage des espèces neutres produites par unité de temps C_n doit être mesuré. Pour ne prendre en compte que les neutres produits dans la région d'interaction, le faisceau d'électrons est modulé (paragraphe IV. 4. 1. b). Simultanément au comptage des ions qui arrivent dans la coupe, un comptage du nombre de neutres produits S pendant l'intervalle de temps T est effectué. De par la modulation, on mesure en fait (S + Background) -(Background). La fluctuation statistique de S donne directement l'incertitude sur la section efficace σ , aussi cette fluctuation est-elle importante à évaluer. Comme les processus de collisions ions-électrons sont aléatoires et que le nombre de neutres produits S est petit devant B, cette fluctuation est obtenue dans le cadre de la statistique de Poisson.

Considérons une fonction f(x, y) = f pour laquelle x et y sont deux quantités statistiques définies par les écarts types σ_x et σ_y .

L'écart type de f est alors donné par :
$$\sigma_f = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2}$$
 (IV

.37)

De plus, si x et y sont caractérisées par des distributions gaussiennes, nous avons :

 $\sigma_x^2 = x \quad \text{et} \quad \sigma_y^2 = y \quad (\text{IV .38})$ Dans le cas présent, f (x, y) = x - y avec x = (B + S) et y = B \quad (\text{IV .39}) $\sigma_f \text{ devient :} \quad \sigma_f = \sqrt{S + 2B} \approx \sqrt{2B} \quad (\text{IV .40})$

Un signal n'est donc représentatif que si l'on a : $S > \sqrt{2B}$ (IV. 41)

IV .5 -Résolution du "Merged Beams": ΔEcm

La résolution en énergie est l'une des caractéristiques fondamentales de la technique "Merged Beams". Elle peut être déduite de la relation (IV. 5) :

$$E_{cm} = (\sqrt{E_+} - \sqrt{E_e})^2 + \sqrt{E_+ E_e} \theta^2$$

Par différentiation, nous obtenons :

$$dE_{cm} = \frac{(\sqrt{E_+} - \sqrt{E_e})}{\sqrt{E_+}} dE_+ - \frac{(\sqrt{E_+} - \sqrt{E_e})}{\sqrt{E_e}} dE_e + \frac{1}{2} \theta^2 \left(\frac{\sqrt{E_e}}{\sqrt{E_+}} dE_+ + \frac{\sqrt{E_+}}{\sqrt{E_e}} dE_e\right) + 2\sqrt{E_+E_e} \theta d\theta \quad (IV.42)$$

Négliger le terme en θ^2 nous donne :

$$dE_{cm} = \left(1 - \frac{\sqrt{E_e}}{\sqrt{E_+}}\right) dE_+ + \left(1 - \frac{\sqrt{E_+}}{\sqrt{E_e}}\right) dE_e + 2\sqrt{E_+E_e} \theta d\theta \qquad (IV.43)$$

Si nous supposons une distribution gaussienne pour les grandeurs E_+ , E_e et $.\theta_-$, nous avons :

$$\Delta E_{cm} = \left[\left(1 - \sqrt{\frac{E_e}{E_+}} \right)^2 \Delta E_+^2 + \left(1 - \sqrt{\frac{E_+}{E_e}} \right)^2 \Delta E_e^2 + 4E_+ E_e \theta^2 \Delta^2 \theta \right]^{\sqrt{2}}$$
(IV.44)

La résolution en énergie est déterminé par ΔE_+ , ΔE_e et $\theta \Delta \theta$ ⁽¹⁷⁾

IV. 5. 1 Dispersion de l'énergie cinétique réduite des ions

D'après la relation (IV. 16), l'électroaimant joue le rôle d'un sélecteur d'énergie pour une espèce donnée. Le faisceau d'ion est rendu monoénergétique par l'action d'un système de "Feedback" qui stabilise le Terminal. Une fluctuation du potentiel du Terminal n'induit qu'une variation du courant I_i mais cette fluctuation n'a aucun effet sur ΔE_+ . Cette dispersion ΔE_+ de l'énergie cinétique des ions reste constante tout le long du faisceau ionique. Au pire, elle peut être estimée à $\Delta E_i=0,1$ keV.

IV. 5. 2 Dispersion de l'énergie cinétique des électrons

La dispersion ΔE_e varie le long du faisceau d'électrons au gré des différents éléments traversés.

<u>Canon à électrons</u> : en l'absence d'inhomogénéité du champ magnétique B, la dispersion ΔE_e en sortie du canon est donnée par⁽¹²⁾ :

$$\Delta E_{ecanon} = kT_{\perp} = kT_{cathode}$$
 (IV .45)

Cette relation, valable quel que soit le canon, donne pour une cathode chauffée à 1500° K, une dispersion $\Delta E_{ecanon}=0,13eV$.

<u>Analyseur trochoïdal</u> : la dispersion ΔE_{ecanon} est réduite par l'analyseur qui est sélectif en énergie. Notons que cette sélectivité est fonction ⁽¹⁸⁾ de l'énergie cinétique u des électrons. En sortie de l'analyseur, la dispersion est $\Delta E_{eanalyseur}$.

 $\begin{array}{l} \underline{R\acute{e}gion\ d'interaction}: \ l'\acute{e}nergie\ des\ \acute{e}lectrons\ dans\ la\ r\acute{e}gion\ d'interaction\ est\ d\acute{e}finie\ par\ le\\ potentiel\ de\ la\ cathode.\ Encore\ faut-il\ que\ \Delta E_{alimcath}\ n'\acute{e}largisse\ pas\ la\ dispersion\ de\ l'analyseur\\ \Delta E_{eanalyseur}\ .\ Le\ potentiel\ de\ la\ cathode\ est\ fourni\ par\ une\ alimentation\ stabilis\acute{e}e.\ Une\ d\acute{e}rive\ de\\ tension\ de\ 0,1\ mV\ constitue\ une\ limite\ sup\acute{e}rieure\ et\ ceci\ dans\ une\ large\ gamme\ de\\ température^{(19)}\ .\ On\ a\ bien\ :\ \Delta E_{alimcath}{<}\Delta E_{analyseur}\ . \end{array}$

La dispersion de l'énergie des électrons dans la région d'interaction $\Delta E_{interaction}$ est toujours inférieure aux énergies E_{cm} auxquelles les sections efficaces sont mesurées.

<u>IV. 5. 3 Angle de confluence</u> θ <u>et divergence</u> $\Delta \theta$ <u>des faisceaux</u> Ces deux derniers paramètres sont délicats à évaluer.

<u>IV. 5. 3. a Evaluation de</u> θ

2 n
2 n

Si nous considérons le processus de RD direct, σ est donné par la relation (II. 27) soit :

Nous déduisons ⁽¹⁾:
$$C_n = K_{e} E_{e}^{-1/2} E_{cm}^{-1/2}$$
 (IV. 46)

 $\sigma = K E_{cm}^{-1}$

K, K' et K '' sont des constantes. La mesure de C_n , fonction de E_{cm} , est comparée aux courbes théoriques obtenues à l'aide des relations (IV.46) et (IV.5). Le meilleur fitage donne l'angle θ .

IV. 5. 3. b Evaluation de $\Delta \theta$

La plus importante contribution à $\Delta\theta$ provient des électrons. La longueur de la région d'interaction est limitée à L = 8,6 cm pour minimiser les effets de divergence (paragraphe IV. 4. 3. a). Vue l'énergie relativement faible E_e du faisceau d'électrons employé pour l'étude des ions moléculaires de masses élevées (~ 30 amu), la divergence de ce type de faisceau doit être plus importante que pour des faisceaux plus rapides. L'étude de la largeur des résonances permet d'évaluer $\Delta\theta$ dans certains cas.

<u>IV. 5. 4 Contributions relatives de</u> ΔE_+ , $\Delta E_e \underline{et} \ \theta \Delta \theta$ <u>à la résolution en fonction de</u> <u>l'énergie relative</u> E_{cm}

Notons d'abord que quelques meV semblent constituer une valeur moyenne de la résolution. A faible énergie relative E_{cm} , la contribution la plus importante ⁽¹⁷⁾à la résolution

provient du terme angulaire $\theta \Delta \theta$. Ce terme devient négligeable devant ΔE_+ et ΔE_e pour des énergies relatives plus élevées.

IV. 6 -Conclusion

La technique "Merged Beams" revêt beaucoup d'intérêt pour l'étude de la recombinaison dissociative, de par les très faibles énergies relatives E_{cm} accessibles. Son excellente résolution, due à l'emploi d'un analyseur trochoïdal (paragraphe IV.4.2), permet d'une part de mesurer directement les sections efficaces de RD (paragraphe III.), et d'autre part d'observer les structures résonantes dues au processus indirect (Relation II .28). Les résultats expérimentaux peuvent être directement confrontés à la théorie.

En revanche, un certain nombre de faiblesses sont à relever, comme la limitation de l'étude par " Merged Beams" aux ions moléculaires de faibles masses (\Box 30 amu). Cette limitation provient de l'énergie requise des électrons E_e , qui par sa faible valeur, les rend difficile-ment manipulables. La solution consisterait à augmenter l'énergie des ions E_i ; cette dernière ne peut toutefois pas dépasser 400 keV. Une objection plus sérieuse est l'état électronique et/ou rovibrationnel des ions étudiés ; dans la majorité des expériences menées, une relaxation sur l'état fondamental est nécessaire. Bien que nous ayons le contrôle de l'EXTRACTION et de la PRESSION de la source d'ions, une étude de la distribution énergétique de ces ions doit être menée au cas par cas. Elle consistera en particulier en l'étude de la désexcitation des ions étudiés avec les autres espèces présentes dans la source. Notons que pour les ions moléculaires dotés d'un moment dipolaire permanent, le "Storage Ring" (Multipass Experiment) a un avantage certain sur les" Merged Beams" (Single pass Experiment) ; les ions y sont à coup sûr relaxés avant recombinaison. En effet, la durée de vie des états excités est petite devant la durée de stockage des ions.

Enfin, un effet de champ sur les états de Rydberg très excités a été récemment mis en évidence. Ces derniers sont épluchés de leur électron de Rydberg au passage du déflecteur électrostatique qui sépare les neutres des ions (paragraphe IV. 4.4). Au lieu d'être totalisés comme neutres, les états de Rydberg ionisés, le sont comme ions. Les sections efficaces sont alors largement sous-estimées. Cet effet concerne les états (n*, v) tel que ⁽²⁰⁾ :

$$n \ge n_{\text{épluché}}$$
 avec $n_{\text{épluché}}^4 = 6,810^8 \frac{Z^3}{E}$ (IV .47)

E champ électrique exprimé en V/cm

Z nombre de masse de l'état de Rydberg

CHAPITRE V - FALP - MS

- V.1 Introduction
- V. 2 Description générale du montage
- V. 3 Caractérisation de l'écoulement
 - V. 3. 1 Nombre de Knudsen
 - V. 3. 2 Nombre de Reynolds
- V.4 Pompage
- V. 5 Création et caractérisation du plasma
 - V. 5. 1 Cavité micro-onde
 - V. 5. 2 Equilibre thermodynamique Thermalisation des électrons
- V. 6 Injections des gaz
 - V. 6. 1 Gaz porteur (Buffer)
 - V. 6. 2 Gaz parent de l'ion terminal
- V. 7 Evolution spatiale des densités de porteurs de charges
 - V. 7. 1 Equation de transport
 - V. 7. 2 Diffusion ambipolaire
 - V. 7. 3 Compétition entre la recombinaison dissociative et la diffusion ambipolaire
 - V. 7. 4 Temps hydrodynamique Temps caractéristiques des réactions chimiques
 - V. 7. 4. a Temps hydrodynamique
 - V. 7. 4. b Temps caractéristiques des réactions chimiques
 - V. 7. 5 Calcul du coefficient de vitesse de recombinaison dissociative $\alpha(T_e)$
 - V. 7. 5. a Pour un unique ion dans le plasma
 - V. 7. 5. b Pour plusieurs ions dans le plasma
 - V.7. 6 Mesure de la vitesse d'écoulement du plasma
 - V. 7 .6. a Méthode perturbative
 - V. 7.6. b Méthode hydrodynamique
- V. 8 Détection
 - V. 8. 1 Sonde de Langmuir
 - V. 8. 1. a Montage électrique
 - V. 8. 1. b Caractéristique courant-tension
 - V. 8. 1. c Mesure de la température électronique Te
 - V. 8. 1. d Mesure de la densité électronique ne
 - V. 8. 2 Spectromètre de masse
- V.9 Conclusion

V. 1 - Introduction

Ce chapitre est dédié à une description détaillée du FALP-MS dont dispose l'Université de Rennes 1. Cet acronyme anglo-saxon signifie « Flowing Afterglow Langmuir Probe - Mass Spectrometer » ou encore « Post décharge en écoulement avec sonde de Langmuir et spectromètre de masse ». Nous caractériserons tout d'abord la nature de l'écoulement du gaz porteur dans l'enceinte expérimentale. Le plasma est généré à l'aide d'une cavité micro-onde ; les caractéristiques de ce plasma en post-décharge seront précisées. Le mode d'obtention de l'ion moléculaire étudié sera ensuite détaillé et les équations de transport des espèces chargées données. Le rôle de la diffusion ambipolaire sera explicité. Enfin, un paragraphe sera consacré aux systèmes de détection ; il s'agit de mesurer les paramètres qui apparaissent dans les équations de transport.

V. 2. - Description générale du montage

Le FALP-MS est une expérience de post-décharge en écoulement. L'ionisation est entretenue sur toute la longueur de l'enceinte par l'écoulement d'un gaz porteur (hélium). Ainsi la zone de formation des ions est physiquement séparée de la zone de recombinaison. La recombinaison dissociative se traduit par la production d'espèces neutres et par les décroissances (rapides) des densités électronique et ionique dans la post-décharge.

L'enceinte expérimentale est constituée d'un tube pyrex (L=50 cm, Φ_{tube} =5 cm) sur lequel s'insère la cavité micro-onde, de tubes en acier inoxydable dans lesquels sont disposés un système de disques pivotants, de portes d'injection de gaz, d'un injecteur à aiguilles et enfin d'un caisson principal. Ces éléments sont visibles sur la figure 1. Les disques pivotant permettent de faire varier la densité électronique initiale N_{eo}.

Le calcul du coefficient de vitesse $\alpha(T_e=300^{\circ}K)$ s'effectue à partir des décroissances des densités de porteurs de charges. Ces densités sont mesurées à l'aide de la sonde de Langmuir et du spectromètre de masse, tous deux mobiles dans l'écoulement et montés dans le caisson principal (Fig. 1 et photo n°1).

Figure 1 : Schéma du "FALP-MS" de l'université de Rennes 1

V.3 - Caractérisation de l'écoulement

Comprendre certaines propriétés du plasma en post-décharge revient à caractériser le type d'écoulement du gaz porteur. Deux grandeurs sans dimension permettent cette caractérisation⁽¹⁾ : le nombre de Knudsen et le nombre de Reynolds .

Photo $n^{\circ}1$: Vue d'ensemble du FALP-MS, caisson principal et spectromètre de masse

Photo $n^{\circ}2$: Décharge et armoire de détection

V. 3. 1 Nombre de Knudsen

Ce nombre est donné par :
$$K = \frac{1}{\Phi_{tube}}$$
 (V.1)

Le libre parcours moyen est $\overline{1}$. Dans nos conditions expérimentales où la pression est généralement de l'ordre du Torr, le libre parcours moyen $\overline{1}$ est de quelques micromètres. Comme le diamètre du tube le plus petit est de 5 centimètres, le nombre de Knudsen est au maximum de 10^{-4} , ce qui est typique d'un écoulement continu.

V. 3. 2 Nombre de Reynolds

Pour un écoulement continu, le nombre de Reynolds permet de distinguer le régime laminaire du régime turbulent.

Ce nombre est donné par :
$$R = \frac{V_{bulk} \Phi_{tube} \rho}{\mu}$$
 (V.2)

La vitesse de débit de l'écoulement ou <u>vitesse bulk</u> est :

 $v_{\text{bulk}} = \frac{Q}{\pi \left(\frac{\Phi_{\text{tube}}}{2}\right)^2 P} \qquad (V.3)$

Le débit total de l'écoulement est Q tandis que la pression est P. La masse volumique et la viscosité du gaz qui constitue l'écoulement sont respectivement ρ et μ . Dans nos conditions expérimentales, nous avons :

$$\begin{split} Q = & Q_{He} = \ 20 \ l \ min^{-1} \ atm \\ P = \ 1,8 \ Torr \\ T_g = \ 300^{\circ}K \\ \rho = & \rho_{He} \ = \ 4,7 \ 10^{-7} \ g \ cm^{-3} \\ \mu = & \mu_{He} \ = \ 2,0 \ 10^{-4} \ g \ cm^{-1} \ s^{-1} \end{split}$$

Le nombre de Reynolds est égal à 85 ; il est très inférieur au nombre de Reynolds critique soit $R_e = 2500$. L'écoulement est donc laminaire et le profil radial des vitesses est parabolique⁽²⁾ :

$$v_{p}(r) = 2v_{bulk} \frac{\left(1 - \frac{4r^{2}}{\Phi_{tube}^{2}} + \frac{4s}{\Phi_{tube}}\right)}{\left(1 + \frac{8s}{\Phi_{tube}}\right)}$$
(V.4)

le coefficient de glissement sur les parois est s ; il est dépendant de la pression, du gaz porteur et du matériau qui constitue la paroi. La vitesse bulk v_{bulk} permet de calculer le temps hydrodynamique.

V. 4 - Pompage

Le montage est pompé par un roots de vitesse de pompage 4000 m³ h⁻¹, lui même pompé par une primaire Stockes de 500 m³ h⁻¹. Les contrôleurs de débit, de type « Tylan », assurent la régulation des flux de gaz injectés dans l'enceinte. La pression est mesurée par un manomètre « Datamétrix » qui peut fonctionner sur la gamme 10^{-3} -14 Torr. La figure 2 donne les courbes de pompage en régime dynamique lorsque l'on injecte de l'argon ou de l'hélium. La pente de chacune de ces courbes donne la vitesse de pompage S pour le gaz considéré. Ces vitesses sont 3500 m³ h⁻¹ pour l'argon et 3000 m³ h⁻¹ pour l'hélium.

V. 5 - Création et Caractérisation du plasma

V. 5. 1 Cavité micro-onde⁽³⁾ (photo $n^{\circ}2$)

Le plasma est créé à l'intérieur d'un tube à décharge en pyrex, tube enchâssé dans une cavité résonante en laiton (figure 3). Un système d'ondes stationnaires est entretenu dans cette

cavité à symétrie cylindrique par un générateur de puissance variable $(20 \le P_{inc} \le 200 \text{ W})$ et de fréquence fixe 2,45 Ghz. Le fait que la puissance incidente soit absorbée par le plasma, implique que le nombre d'onde, qui caractérise la propagation du rayonnement micro-onde à l'intérieur du plasma, soit complexe. La partie réelle de ce nombre d'onde a un caractère géométrique (dimension de la cavité résonante) ; la partie imaginaire reflète la puissance absorbée par la décharge. Un paramètre important de la cavité est son facteur de qualité Q ; il reflète la capacité de stockage de l'énergie électromagnétique. La cavité doit être accordée ; deux tiges métalliques permettent de minimiser, voir d'annuler, la puissance réfléchie vers le générateur. Le nombre d'onde complexe est étroitement lié à la conductivité complexe de la décharge. Cette dernière impose les décalages de la fréquence de résonance $\Delta \omega$ et du facteur de qualité ΔQ dus à la présence de la décharge. Les décalages $\Delta \omega$ et ΔQ sont directement reliés à la densité électronique n_e et à la fréquence de collisions électrons-neutres. Un ordre de grandeur des densités électroniques obtenues à l'aide de notre cavité est de 10^{11} électrons cm⁻³

Le tube pyrex est refroidi en continu par de l'air comprimé. Le but est de maintenir la température du gaz porteur à température ambiante ($T_g=300^{\circ}K$) et d'empêcher une destruction du tube. La décharge est allumée à l'aide d'un igniteur HF et haute tension. Les caractéristiques de la décharge (température électronique, densité d'ionisation) dépendent fortement d'un certain nombre de paramètres⁽⁴⁾ : nature du gaz porteur, pression, puissance incidente injectée dans la cavité, dimension de la cavité, diamètre du tube pyrex.

V.5.2 Equilibre thermodynamique -Thermalisation des électrons

Dans la décharge, quelque soit le gaz porteur utilisé (He ou Ar), la température électronique est élevée (plusieurs électron volts). Il est fondamental de bien comprendre l'évolution de cette température électronique entre la décharge et la post-décharge. Toutes nos études sont effectuées en post - décharge à l'équilibre thermodynamique ($T_g=T_i=T_e=300^\circ$ K). A l'inverse de la décharge, caractérisée par la présence d'un champ électrique important, la post décharge en est dénuée. Ainsi le principal mécanisme de réchauffement des électrons y est inopérant.

Figure 3 : Décharge micro-onde

Les mécanismes de refroidissement des électrons sont prépondérants dans la post-décharge. Il s'agit des collisions électrons - atomes et de la diffusion⁽⁵⁾.

Les collisions électrons-atomes se caractérisent par un transfert de quantité de mouvement des électrons vers les atomes. L'efficacité du mécanisme dépend de la fréquence de collisions. Cette grandeur est elle-même liée aux sections efficaces de transfert de quantité de mouvement ("Momentum Cross sections"). Ainsi peuvent s'expliquer les différences de comportement de l'argon et de l'hélium vis à vis de la thermalisation des électrons⁽⁶⁾. Les sections efficaces σ_m , présentées figure 4, ont un large minimum (Ramsauer minimum) dans l'argon alors que ce n'est pas le cas dans l'hélium. Ceci a pour conséquence l'impossibilité pour des électrons très énergétiques ($kT_e>1$ eV) de se thermaliser dans un buffer d'argon alors qu'ils le peuvent dans un buffer d'hélium.

Les vitesses de RD de H_3^+ , Kr H^+ et Xe H^+ ont été mesurées dans un buffer d'hélium ce qui garantit une thermalisation complète des électrons à la température du gaz, soit 300°K.

V. 6 - Injections des gaz

V. 6. 1 Gaz porteur (buffer)

L'hélium est employé comme gaz porteur. Après traversée de la cavité micro-onde, un plasma d'hélium est constitué d'ions He^+ , He_2^+ , d'atomes métastables He (2³S), d'électrons et

d'atomes d'hélium dans leur état fondamental. L'injection d'argon, à contre courant, permet ensuite de convertir le plasma d'hélium en un plasma dominé par l'ion Ar^+ , à l'exception de l'ion He^+ qui réagit très lentement avec l'argon. L'implication de l'ion He^+ dans une réaction termoléculaire avec deux atomes d'hélium, permet de détruire He^+ au profit d' He_2^+ (rôle de la pression).

La chimie est la suivante :

 $He^++2He \rightarrow He_2^++He$

 $He(2^{3}S)+Ar \rightarrow Ar^{+}+He+e$

 $He_2^++Ar \rightarrow Ar^++2He$

Comme ce dernier est à l'origine de toute la chaîne de réactions menant à l'ion étudié, l'argon est qualifié de gaz parent de l'ion primaire.

V. 6. 2 Gaz parent de l'ion terminal

Le gaz parent de l'ion terminal prend part à des réactions ion-molécule pour donner l'ion terminal. Ainsi les ions H_3^+ sont obtenus par injection de H_2 . Le gaz parent de l'ion terminal est injecté à contre-courant pour favoriser le mélange avec l'ion primaire Ar^+ . Enfin, les débits injectés sont fonction des temps caractéristiques des réactions ion-molécule (voir paragraphe V. 7. 4. b).

V. 7 - Evolution spatiale des densités de porteurs de charges

V. 7. 1 Equation de transport

L'équation de transport de l'ion AB⁺ s'écrit :

$$v_{p} \frac{\partial [AB_{+}]}{\partial z} = D_{a} \vec{\nabla}_{cylin}^{2} [AB_{+}] - \alpha_{RD} [AB_{+}] n_{e} + \sum_{f} k_{f} [P_{+}] C_{f} - \sum_{i} k_{i} [AB_{+}] C_{i}$$
(V.5)

La vitesse d'écoulement du plasma est v_p . Les concentrations de l'ion AB^+ , des électrons, de l'ion primaire P^+ , du gaz parent de AB^+ et des impuretés sont respectivement $[AB^+]$, n_e , $[P^+]$, C_f et C_i . La composante longitudinale de l'écoulement est z. Le coefficient de diffusion ambipolaire de l'ion AB^+ est D_a . Les coefficients de vitesse de RD, de la f^{ième} réaction de formation de AB^+ et de la i^{ème} réaction de destruction de AB^+ par les impuretés sont respectivement α_{RD} , k_f et k_i .

Les débits des différents gaz injectés sont ajustés de telle sorte que les réactions de formation de AB⁺ (termes source) n'aient plus lieu dans la zone de recombinaison. Bien que la diffusion ambipolaire soit négligeable dans la plupart de nos expériences, il nous a semblé opportun de rappeler ses caractéristiques.

V. 7. 2 Diffusion ambipolaire

La très grande différence de mobilités entre les ions et les électrons provoque la création d'un champ électrique. Les électrons, bien qu'ayant tendance à précéder les ions, sont freinés par ces derniers. A l'inverse, les ions sont accélérés par la présence des électrons. Le mouvement des particules chargées peut être traité comme si l'ensemble des charges diffusaient à une vitesse commune dans la direction du champ.

La vitesse totale de diffusion pour une espèce chargée est :

$$v_{(i,e)}(t) = -\frac{D_{(i,e)}}{n_{(i,e)}} \frac{dn_{(i,e)}}{dl} (\frac{t}{d})_{(e)}^{(i)} \mu_{(i,e)} E$$
(V. 6)

Les coefficients de diffusion libre ainsi que les mobilités des ions et des électrons, sont respectivement D_i , μ_i et D_e , μ_e .

La charge d'espace globale est nulle : $n_i = [AB_+] = n_e = n$ (V.7)

et
$$\frac{dn_i}{dl} = \frac{dn_e}{dl} = \frac{dn}{dl}$$
 (V.8)

La vitesse de diffusion ambipolaire est alors donnée par :

$$v_{a} = -\frac{D_{a} dn}{n dl} = -\left[\frac{D_{i}\mu_{e} + D_{e}\mu_{i}}{\mu_{e} + \mu_{i}}\right] \frac{1 dn}{n dl}$$
(V.9)

A l'aide des relations d'Einstein $D_{(i,e)} = \mu_{(i,e)} \frac{kT_{(i,e)}}{e}$ et de la simplification $\mu_e \gg \mu_i$, le coefficient D_a s'écrit : $D_a = D_i \left(1 + \frac{T_e}{T_i}\right)$ (V .10)

Dans le cas d'un plasma contenant plusieurs espèces ioniques, les relations d'Oskam⁽⁷⁾ permettent de calculer les coefficients de diffusion ambipolaire individuels.

V. 7. 3 - Compétition entre la recombinaison dissociative et la diffusion ambipolaire

Dans un plasma non-recombinant, la diffusion ambipolaire devient significative pour une densité d'ionisation supérieure à 10^8 cm⁻³. En revanche, dans un plasma où la cause principale de disparition des espèces chargées est la recombinaison en volume (RD), la contribution de la diffusion est négligeable. Gray et Kerr⁽⁸⁾ ont donné un critère qui permet d'apprécier les contributions respectives de la diffusion et de la recombinaison en volume. En résolvant l'équation de transport pour les électrons et en supposant l'électroneutralité globale du plasma, ils ont montré que la nature des solutions dépend exclusivement du paramètre sans

dimension :

$$\beta = \frac{\alpha n_{eo} \Lambda^2}{D_a} \qquad (V$$

.11)

Le coefficient de recombinaison en volume est $\alpha = \alpha_{RD}$. La densité électronique initiale est n_{eo} tandis que la longueur de diffusion du mode fondamental est Λ , pour une cavité cylindrique de longueur infinie. Dans notre expérience, nous avons pu l'évaluer à $\Lambda = 1,75$ cm, ce qui correspond à un cylindre de diamètre $\Phi = 2\Lambda\lambda_1 = 8,4$ cm, avec $\lambda_1 = 2,405$ le premier zéro de la fonction de Bessel. Le plasma est dominé par la recombinaison en volume (RD) lorsque $\beta >>1$ et par la diffusion lorsque $\beta <<1$.

V. 7. 4 Temps hydrodynamique - Temps caractéristiques des réactions chimiques V. 7. 4. a Temps hydrodynamique

Il est défini par la relation $\tau_{\text{Hydro}} = \frac{L_{\text{réact}}}{v_{\text{bulk}}}$ (V. 12)

La longueur de réaction est $L_{réact}$.

V. 7. 4. b Temps caractéristiques des réactions chimiques

Nous choisissons de traiter le cas des réactions binaires ion-molécule et le cas de la recombinaison dissociative.

Réaction binaire ion-molécule : Elle peut être symbolisée par AB++Ckein AC++B

Nous pouvons définir le temps caractéristique par : $\tau_{\text{BIM}=\frac{1}{1}}$

 $\tau_{\text{BIM}} = \frac{1}{k_{\text{BIM}}[C]} \qquad (V. 13)$

<u>Réaction de RD</u> : Elle peut être symbolisée par $AB_++e^{\alpha RB}A+B$

Nous pouvons définir le temps caractéristique par : $\tau_{RD} = \frac{1}{\alpha_{RD}n_e}$ (V. 14)

V. 7. 5 Calcul du coefficient de vitesse de recombinaison dissociative $\alpha(T_e)$

V. 7. 5. a Pour un unique ion dans le plasma

Si nous supposons qu'un seul type d'ion AB^+ est présent dans le plasma et que la concentration des impuretés est négligeable, nous obtenons :

$$v_{p}\frac{\partial n_{e}}{\partial z} = -\alpha_{RD}[AB_{+}]n_{e} = -\alpha_{RD}n_{e}^{2} \qquad (V. 15)$$

L' intégration nous donne : $\frac{1}{n_{e}(z)} = \frac{1}{n_{e}(z_{0})} + \frac{\alpha_{RD}}{v_{p}}(z-z_{0})$ (V. 16)

La représentation de $\frac{1}{n_e(z)}$ en fonction de z donne le rapport $\frac{\alpha_{RD}}{v_p}$. Comme la vitesse v_p du plasma est masurée, pour pouvons calcular α_{RD} pour l'unique ion átudió

plasma est mesurée, nous pouvons calculer α_{RD} pour l'unique ion étudié.

V. 7. 5. b Pour plusieurs ions dans le plasma

Nous reprenons l'équation de transport (V. 5) et ne considérons que les termes de destruction de l'ion AB^+ par la RD et par les réactions ion-molécule avec les impuretés.

Nous avons :
$$v_p \frac{\partial [AB_+]}{\partial z} = -\alpha_{RD} [AB_+] n_e - \sum_i k_i [AB_+] C_i$$
 (V. 17)

qui donne :

$$\frac{\partial [AB_{+}]}{[AB_{+}]} = \partial \ln [AB_{+}] = \frac{\alpha_{RD}}{v_{p}} n_{e} \partial z - \frac{1}{v_{p}} \sum_{i} k_{i} C_{i} \partial z \qquad (V. 18)$$

Si nous supposons que la concentration C_i en impuretés est constante suivant z, nous obtenons finalement :

$$\ln\left(\frac{\left[AB_{+}\right]_{z}}{\left[AB_{+}\right]_{z_{o}}}\right) = -\frac{\alpha_{RD}}{v_{p}} \int_{z_{o}}^{z} n_{e} dz - \frac{1}{v_{p}} \sum_{i} k_{i} C_{i}(z-z_{o})$$
(V. 19)

Deux méthodes de calcul de α_{RD} sont alors possibles :

<u>Méthode à z variable</u> : Elle consiste à mesurer les décroissances de $[AB^+]$ et de n_e en fonction de z. La représentation de $ln\left(\frac{[AB_+]_z}{[AB_+]_{z_o}}\right)$ en fonction de $\int_{z_o}^{z} n_e dz$ donne le rapport $\frac{\alpha_{RD}}{v_p}$. Nous

pouvons alors déduire α_{RD} pour l'ion considéré.

Cette méthode ne vaut que si nous pouvons négliger la contribution due aux impuretés. Si cette dernière ne peut être négligée, la mesure ne fournit qu'une limite supérieure de α_{RD} .

<u>Méthode à z constant</u> : Elle consiste à faire varier la densité électronique (puissance de la décharge, position des disques) pour une position z donnée. La contribution des impuretés est alors constante. Le coefficient α_{RD} est calculé de façon identique à la méthode précédente.

V. 7. 6. Mesure de la vitesse d'écoulement du plasma

Les méthodes d'analyse, décrites dans le paragraphe précédent, permettent de déterminer le rapport $\frac{\alpha_{RD}}{v_p}$. Le calcul de α_{RD} requiert la mesure de la vitesse d'écoulement du plasma.

V. 7. 6. a Méthode perturbative

Elle consiste à moduler l'alimentation de la décharge micro-onde. La perturbation périodique du plasma, provoquée par la modulation BF, est observée par la sonde de Langmuir lorsque cette perturbation l'atteint. Le courant d'électrons I_e est mesuré par la sonde qui fonctionne en un point particulier de la caractéristique courant-tension. Si nous déplaçons la sonde en aval de l'écoulement d'une distance Δz , la perturbation est alors observée avec un retard Δt par rapport à la position précédente de la sonde. Le tracé Δz en fonction de Δt permet de déduire la vitesse v_p .

V. 7. 6. b Méthode hydrodynamique

Une technique hydrodynamique, dite du tube de Pitot, est utilisée conjointement à la méthode perturbative.

En régime subsonique, le tube de Pitot utilisé est une sonde double de pression que l'on place parallèlement à un filet fluide. Pour un fluide compressible en écoulement adiabatique et réversible, le nombre de Mach est donné par⁽¹⁾ :

$$M = \frac{u}{a} = \sqrt{\frac{2}{\gamma - 1} \left[\left(1 + \frac{\Delta P}{P_{\text{statique}}} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]}$$
(V. 20)

avec

u : vitesse de débit de l'écoulement

 $a = \sqrt{\gamma \frac{RT}{M}}$: vitesse du son dans le milieu

 γ : rapport de la chaleur spécifique à pression constante sur la chaleur spécifique à volume constant.

Pour un gaz monoatomique, le rapport γ est 5/3.

$$\Delta \mathbf{P} = \mathbf{P}_{\text{impact}} - \mathbf{P}_{\text{statique}}$$

Les pressions d'impact et statique sont mesurées à l'aide du datamétrix. La pression statique est en fait la pression dans l'enceinte expérimentale.

Les deux techniques de mesures donnent des résultats très similaires, soient 2,4 10⁴ cm s⁻¹.

Figure 5 : Tube de Pitot

V.8 Détection

Il s'agit de pouvoir mesurer les densités ionique et électronique le long de l'écoulement. Un spectromètre de masse et une sonde de Langmuir sont utilisés à cet effet (photos $n^{\circ}1$ et 2).

V. 8. 1 Sonde de Langmuir

La sonde de Langmuir constitue une technique privilégiée pour l'étude locale d'un plasma. En raison des potentiels électriques appliqués à cette sonde, les propriétés locales de ce plasma sont perturbées (densité et énergie des porteurs de charges). Les caractéristiques courant-tension (I_s, U) sont les données expérimentales à partir desquelles sont déduites la densité et la température électronique. Une parfaite compréhension des perturbations sonde-plasma est requise pour une exploitation correcte de ces caractéristiques.

V. 8. 1. a Montage électrique

Le schéma 6 illustre le fonctionnement de la sonde.

La tension U entre la surface de la sonde et l'électrode de référence se décompose en :

 $U=V_p+V_s \tag{V. 21}$

Le potentiel électrique du plasma est V_p tandis que la différence de potentiel entre la surface extérieure de la gaine et la surface de la sonde est V_s . L'électrode de référence est la paroi du caisson. Le potentiel électrique du plasma est V_p tandis que la différence de potentiel

entre la surface extérieure de la gaine et la surface de la sonde est V_s . L'électrode de référence est la paroi du caisson.

V. 8. 1. b Caractéristique courant-tension

Considérons une sonde cylindrique de rayon R_s et de longueur L. La gaine est définie comme le proche environnement de la sonde où le plasma est perturbé. Cette gaine a pour $ravon^{(9)}$:

> $R_{g}=1,66\lambda_{D}\left(\frac{e|V_{p}-U|}{kt_{e}}\right)^{3/4}+R_{s}$ (V. 22) $\lambda_{\rm D} = \left(\frac{\epsilon_{\rm o} k T_{\rm e}}{e^2 n_{\rm e^{\infty}}}\right)^{1/2}$

(V. 23)

La longueur de Debye est :

La densité électronique du plasma non perturbé est new.

Figure 6 : Schéma électrique de la sonde de Langmuir

Restreignons nous à la théorie de Langmuir. Un certain nombre d'hypothèses simplificatrices délimitent un domaine précis de validité de cette théorie.

• Le plasma non perturbé est infini, homogène et globalement neutre. Ce n'est pas le cas de la gaine où les espèces chargées sont soumises à un fort champ électrique.

• La longueur de Debye⁽¹⁰⁾ doit demeurer petite devant les dimensions caractéristiques de la sonde. En vertu de la relation (V. 23), il existe une limite inférieure à la densité électronique précisément mesurable, pour une sonde donnée. En dessous de cette densité seuil ($\sim 10^8$ cm⁻³), la symétrie cylindrique de la gaine est rompue⁽¹¹⁾.

• La diffusion libre des espèces chargées est négligée dans la gaine ; leur libre parcours moyen doit être grand devant les dimensions de la sonde. Dans les conditions expérimentales usuelles (basses pressions), cette hypothèse sur le libre parcours moyen des électrons est pleinement justifiée. En revanche, elle ne l'est absolument pas pour les ions (rapport de masse).

• Toute particule chargée qui heurte la sonde est absorbée et ne réagit pas avec le matériau qui constitue cette dernière.

• Contrairement à la théorie de Druyvestyn où la fonction de distribution des électrons est déduite de la caractéristique (Is, U), la théorie de Langmuir suppose une distribution maxwellienne des vitesses des porteurs de charges.

Les caractéristiques courant-tension peuvent être conventionnellement divisées en cinq régions; ces dernières correspondent à différents régimes de fonctionnement de la sonde. Les trois principales (II, III et IV) sont délimitées par deux potentiels sonde V_s particuliers : le potentiel flottant V_f et le potentiel plasma V_p .

<u>Potentiel flottant</u> : $U_f = V_p + V_f$ ($V_s = V_f$)

Supposons la sonde électriquement isolée de son alimentation. En raison de l'électroneutralité du plasma, les densités des porteurs de charges sont identiques. En revanche, les électrons ont une vitesse moyenne \overline{v}_e plus importante - dans un rapport $\sqrt{\frac{m_i}{m_e}}$ -

que celle des ions \overline{v}_i . Davantage d'électrons que d'ions atteignent la sonde et une charge négative s'accumule alors globalement à la surface. La charge d'espace devient ensuite importante et les électrons finissent par être repoussés tandis que les ions sont accélérés. Enfin une gaine chargée positivement se forme autour de la sonde jusqu'à ce qu'un équilibre dynamique s'établisse entre les ions et les électrons. Le courant de sonde I_s est alors nul ; la sonde est au potentiel flottant V_f, négatif par rapport au potentiel plasma V_p.

<u>Potentiel plasma</u> : $U_p = V_p$ ($V_s = 0$)

La sonde est au potentiel du plasma. En vertu de la relation (V. 22), le rayon de la gaine est égal à celui de la sonde ; il n'y a pas de gaine.Des cinq régions décrites ci-dessous, seules les régions III, IV et V sont représentées sur la figure 7.

<u>Région I</u> La sonde est portée à un potentiel U très négatif par rapport au potentiel plasma U_p . Les ions sont très violemment accélérés vers la gaine et ont l'énergie cinétique suffisante pour arracher des électrons à la surface de la sonde (émission secondaire d'électrons). Ces électrons sont ensuite violemment expulsés vers l'extérieur de la gaine. Cette région de la caractéristique est inutilisable.

<u>Région II</u> Le potentiel appliqué est tel que $U < U_f$. Il est attractif pour les ions et fortement répulsif pour les électrons. Le plateau est du à la saturation du courant ionique collecté sur la sonde. Cette région est inexploitable par la théorie de Langmuir en raison de l'hypothèse de non-diffusion des ions dans la gaine.

Figure 7 : Caractéristique (I_s,U)

<u>Région III</u> Le potentiel appliqué est tel que $U_f < U < U_p$; il est attractif pour les ions. En revanche, bien qu'il soit répulsif pour les électrons, les plus énergiques d'entre eux peuvent franchir la barrière de potentiel ; ils sont alors collectés. La barrière de potentiel diminue lorsque U tend vers U_p .

<u>Région IV</u> Le potentiel appliqué est tel que $U>U_p$. IL est fortement répulsif pour les ions et attractif pour les électrons. Pour un potentiel U suffisant, les électrons sont tous collectés (courant de saturation électronique).

 $\underline{\text{Région V}^{(12)}}$ La sonde est portée à un potentiel très positif par rapport au plasma. Les électrons sont violemment accélérés dans la gaine et ionisent les neutres présents. La sonde se comporte comme un générateur de plasma. Cette région de la caractéristique est inutilisable.

Les régions III et IV sont exploitées pour déterminer la température T_e et la densité électronique dans le plasma⁽¹⁴⁾. Ces régions correspondent respectivement à :

- $V_s < 0$ (U<U_p : potentiel répulsif ou retardateur pour les électrons)
- $V_s>0$ (U>U_p : potentiel attractif ou accélérateur pour les électrons).

La théorie de Langmuir n'est pas reproduite dans ce mémoire. Nous nous contentons de signaler qu'elle est basée sur des considérations mécaniques (loi de conservation de l'énergie et du moment cinétique de l'électron incident).

V. 8. 1. c Mesure de la température électronique T_e

La tension U est telle que U<U_p (potentiel retardateur). La température $T_{\rm e}$ est alors donnée par :

$$T_{e} = \frac{e}{k} \left[\frac{1}{\frac{d \ln I_{e}}{d U}} \right]$$
(V. 24)

Le courant électronique I_e est tel que I_e = I_s - I_i ; le courant ionique doit être soustrait du courant sonde.

V. 8. 1. d Mesure de la densité électronique ne

La tension U est telle que U>U_p (potentiel accélérateur). Pour une sonde cylindrique de rayon R_s et de longueur L, le courant sonde est donné par⁽¹³⁾ :

$$I(V_{s}) = \frac{1}{4} n_{e} e \overline{v}_{e} S\left(\frac{R_{g}}{R_{s}}\right) \left(\phi_{\left(\sqrt{\frac{\eta R_{s}^{2}}{R_{g}^{2} - R_{s}^{2}}}\right)} + \frac{R_{s}}{R_{g}} e_{\eta} \left(1 - \phi_{\left(\sqrt{\frac{\eta R_{g}^{2}}{R_{g}^{2} - R_{s}^{2}}}\right)} \right) \right)$$
(V. 25)

La vitesse moyenne des électrons est

26)

La surface de la sonde est

La fonction Φ . est définie par :

Ĩ

La paramètre η est égal à

Dans nos conditions expérimentales où le rayon de la gaine R_g est grand devant celui de la sonde, nous pouvons simplifier l'expression (V. 25) par :

 $\eta = \frac{eV_s}{kT_e} (V_s > 0)$

$$I(V_{s}) = \frac{1}{4} n_{e} e \overline{v}_{e} S \left[\frac{R_{g}}{R_{s}} \phi_{\left(\frac{R_{s}}{R_{g}}\sqrt{\eta}\right)} + e_{\eta} \left(1 - \phi_{\left(\sqrt{\eta}\right)} \right) \right]$$
(V. 30)

$$S=2\pi R_{s}L$$
 (V. 27)

(V.

 $\overline{v}_{e} = \sqrt{\frac{8kT_{e}}{\pi m_{e}}}$

 $\phi_{(s)} = \frac{2}{\sqrt{\pi}} \int_{0}^{s} e_{-u_2} du \qquad (V. 28)$

(V. 29)

Or d'après les expressions (V. 22) et (V. 29) : $\frac{R_g}{R_s\sqrt{\eta}} = \frac{1.66\lambda_D}{R_s} \left(\frac{eV_s}{kT_e}\right)^{1/4} + \left(\frac{kT_e}{eV_s}\right)^{1/2} >>1$

Donc
$$\frac{R_s\sqrt{\eta}}{R_g} \rightarrow 0$$
 et $\phi_{\left(\frac{R_s\sqrt{\eta}}{R_g}\right)} = \frac{2}{\sqrt{\pi}} \int_{0}^{\frac{R_s\sqrt{\eta}}{R_g}} e^{-u_2} du = \frac{2}{\sqrt{\pi}} \int_{0}^{\frac{R_s\sqrt{\eta}}{R_g}} du = \frac{2}{\sqrt{\pi}} \frac{R_s}{R_g} \sqrt{\eta}$

De plus, la fonction erf est définie comme $erf_{(s)}=1-\phi_{(s)}$ L'expression (V. 30) devient :

$$I(V_{s}) = \frac{1}{4} n_{e} e \overline{v}_{e} S \left[\frac{2}{\sqrt{\pi}} \sqrt{\eta} + e_{\eta} erf_{(\sqrt{\eta})} \right]$$
(V. 31)

 $\begin{array}{l} Or^{(14)} \mbox{ pour } \eta \geq \ 2 \mbox{ soit } V_s > \frac{2kT_e}{e} \ = \ 0,05V \ (T_e = \ 300^\circ K), \mbox{ le facteur } \left\lfloor \frac{2}{\sqrt{\pi}} \sqrt{\eta} + e_\eta erf_{(\sqrt{\eta})} \right\rfloor \ varie \\ \mbox{ comme } \left\lfloor \frac{2}{\sqrt{\pi}} \sqrt{l+\eta} \right\rfloor \end{array}$

Le courant sonde est finalement :

$$I(V_s) = \frac{1}{4} n_e e \overline{v}_e S \frac{2}{\sqrt{\pi}} \sqrt{1 + \frac{e V_s}{k T_e}} \qquad (V. 32)$$

Si l'on trace $I^2(V_s)$ en fonction de V_s , la droite obtenue a pour pente p :

$$p = \frac{8e^{3}R_{s}^{2}L^{2}}{m_{e}}n_{e}^{2}$$
 (V. 33)

La densité électronique est finalement⁽¹⁵⁾ :

$$n_e^2 = \frac{m_e p}{8e^3 R_s^2 L^2}$$
 (V. 34)

La relation (V. 34) ne vaut que jusqu'à une tension U_{max} au delà de laquelle la géométrie de la gaine, initialement cylindrique, se modifie pour tendre vers celle d'une sphère (figures 8 et 9). L'amplitude de la rampe de tension doit être ajustée pour ne pas dépasser cette valeur U_{max} .

Figure 8 : I_s^2 en fonction de U (forte densité électronique)

Figure 10 : Sonde de Langmuir

V. 8. 2 Spectromètre de masse

Le spectromètre de masse est un appareil capable de distinguer des espèces ioniques présentes dans un plasma en fonction de leur rapport charge sur masse. Il est situé à l'intérieur d'un tube tronconique pompé continûment par une pompe turbomoléculaire. Le tube est en outre mobile dans l'écoulement, ce qui permet l'étude de la physico-chimie du plasma à différentes positions de la post décharge (Fig. 1).

L'extrémité du tube tronconique est constituée d'une pastille de molybdène polarisée (lentille électrostatique) dans laquelle a été percé un orifice d'échantillonnage de 0,1 mm de diamètre. Les ions du plasma s'introduisent par cet orifice, sont accélérés, puis accèdent au filtre de masse quadrupolaire. C'est dans ce dernier qu'est faite la sélection des ions en fonction de leur rapport e/m, indépendamment de l'énergie incidente de ces ions.

Filtre quadrupolaire⁽¹⁶⁾

Le filtre est constitué de quatre électrodes cylindriques identiques, de rayon a, de longueur L=15 cm, placées symétriquement à la distance $2r=\frac{2a}{1,16}$ les unes des autres (figure 11).

Les surfaces internes des cylindres constituent une excellente approximation d'hyperboloïdes qui, de par la géométrie du système, permettent d'obtenir un potentiel quadrupolaire dans le plan transversal (x, y) :

$$V(x,y) = V_{e} \frac{(x^{2} - y^{2})}{r^{2}}$$
(V. 35)

La tension V_e , appliquée sur chaque électrode, a une composante continue V_c et une composante alternative Haute Fréquence V_a : $V_e = \pm (V_c + V_a \cos(\omega t))$

(V. 36)

Figure 11 : Filtre quadrupolaire

Le champ électrique résultant est donné par :

$$\vec{E}(x,y) = -g\vec{r}adV(x,y) = -2\frac{(V_c + V_a\cos(\omega t))}{r^2}(x\vec{i} - y\vec{j})$$
 (V. 37)

Pour une espèce ionique (m_i , $q_i = e$) donnée, les équations du mouvement sont :

$$m_{i}x + (V_{c} + V_{a}\cos(\omega t))\frac{2e}{r^{2}}x = 0$$
 (V. 38)

$$m_{i}\ddot{y} - (V_{c} + V_{a}\cos(\omega t))\frac{2e}{r^{2}}y = 0$$
 (V. 39)

$$m_i z = 0$$
 (V. 40)

L'équation (V. 40) se résout aisément si nous supposons que l'ion a été accéléré par la différence de potentiel V_{acc} avant son entrée dans le filtre :

$$z = \sqrt{\frac{2eV_{acc}}{m_i}}t$$
 (V. 41)

Les équations (V. 38) et (V. 39) constituent un exemple d'équations de Mathieu dont la forme générale est :

$$\frac{d^2X}{d\theta^2} + (a - 2q\cos(2\theta))X = 0$$
 (V. 42)

La variable X représente les coordonnées tranversales x et y. La variable θ représente la phase de la composante alternative HF V_a ($\theta = \frac{\varpi t}{2}$). Les paramètres sans dimension a et q permettent de décrire le comportement de l'espèce ionique dans le filtre

$$a = \frac{8eV_c}{m_i\omega^2 r^2}$$
(V. 43)

$$q = \frac{4eV_a}{m_i\omega^2 r^2}$$
(V. 44)

Le théorème de Floquet est applicable et les solutions sont de la forme :

$$X = k_{+}l^{_{i\beta\theta}}\sum_{s} C_{2s}e^{2is\theta} + k_{-}l^{_{-i\beta\theta}}\sum_{s} C_{2s}e^{-2is\theta}$$
(V. 45)

Les constantes k_+ et k_- dépendent des conditions initiales. Le paramètre β donne la stabilité ou l'instabilité de la solution. Si β est réel, la solution est stable ; si β est imaginaire, la

solution est instable. Ainsi le paramètre β permet de délimiter les régions de stabilité sur le diagramme (a, q) (figure 12). Notons que les solutions X doivent être simultanément stables suivant les directions x et y ; ceci limite drastiquement les régions de stabilité du filtre.

Figure 12 : Diagramme de stabilité du quadripôle

Comme V_c et V_a sont fixés, il est en pratique judicieux de définir un paramètre R :

$$R = \frac{V_c}{V_a} = \frac{a}{2q}$$
(V.46)

Ce paramètre reflète une propriété fondamentale du filtre : sa résolution en masse. Elle représente la capacité qu'a le filtre, de séparer deux masses voisines l'une de l'autre. De plus, comme ω et r sont également fixés, il est possible de séparer les ions en fonction de leur rapport m_i/e. Il faut faire varier soit a, soit q. Ainsi un ion qui a la masse m_i requise ou éventuellement une masse voisine, voit l'amplitude de ses oscillations limitée dans le plan (x, y) lors de son déplacement suivant z ; il passe à travers le filtre. A l'inverse, s'il n'a pas la masse requise, l'amplitude de ses oscillations augmente jusqu'à ce qu'il soit capturé par l'une des électrodes⁽¹⁷⁾ (figure 13).

A la sortie du filtre quadrupolaire, les ions sont refocalisés puis déviés vers un channeltron dont la tête est portée à une haute tension négative (≈ 2.5 kV). Pour pouvoir être détecté sur une chaîne de comptage, le très faible courant d'ions doit être converti en un courant d'électrons macroscopique ; c'est le rôle du channeltron.

Un ion incident, très énergique, heurte les parois du channeltron et y arrache des électrons qui sont repoussés vers la queue de ce dernier (masse). Chacun de ces électrons heurte à son tour les parois et y arrachent des électrons secondaires. De proche en proche, il est possible d'obtenir un courant macroscopique sur la queue du channeltron. Ce courant est acheminé vers un préamplificateur puis vers un amplificateur, avant d'être envoyé sur la chaîne de comptage. La présence de haute tension dans le spectromètre de masse nécessite un vide poussé ; il s'agit d'éviter les problèmes de claquages électriques. Ce vide est obtenu par une pompe turbomoléculaire ($450 \ 1 \ min^{-1}$) tirée par une petite pompe primaire.

Figure 13 : Trajectoire des ions dans le filtre

<u>Pompe turbomoléculaire</u> : le rotor, entraîné par un moteur à induction, est constitué d'un étagement de disques sur lesquels sont fixées des ailettes suivant une orientation précise. La rotation rapide de ces ailettes induit un fort gradient de pression de part et d'autre de la turbine ; aussi est-il possible d'entraîner les molécules que l'on souhaite pomper. Comme la turbo ne peut fonctionner qu'en régime moléculaire libre (pas de collisions molécule-molécule), un vide primaire est nécessaire dans son enceinte ($P<10^{-2}$ Torr). La vitesse de pompage est proportionnelle à la vitesse des ailettes ; elle doit être très grande devant la vitesse thermique moyenne des molécules. Ceci implique une rotation très rapide du rotor et explique le fait que l'hydrogène soit le gaz le plus difficile à pomper (masse faible, vitesse thermique élevée).

V.9 - Conclusion

Le FALP - MS revêt beaucoup d'intérêt pour l'étude de la recombinaison dissociative et en particulier pour celle des gros ions moléculaires (KrH⁺, XeH⁺). En effet, ces derniers ne peuvent pas être étudiés par les techniques en faisceaux.

En revanche, le montage actuel ne permet les mesures de vitesse de RD qu'à la tempé-rature ambiante du gaz porteur.

Les deux chapitres suivants sont consacrés à la présentation des résultats obtenus avec le "Merged Beams" et le FALP - MS.

<u>Bibliographie</u>

(1) E. A. Brun, A. Martinot - Lagarde and J. Mathie	eu « Mécaniques des fluides »
	(Tome 1, Dunod, Paris, 1960).
(2) E. E. Ferguson, F. C. Fehsenfeld and A. L. Schu	neltekopf
	Adv. Atom. Molec. Phys., <u>5</u> , 1, (1969).
(3) W. McColl, C. Brooks and M.L. Brake	J. Appl. Phys., <u>74</u> , 3724, (1993).
(4) J. R. Rogers "Thèse d'Université "	(Michigan, 1982).
(5) D. Trunec, P. Spanel and D. Smith	Contrib. Plasma Phys., <u>34</u> , 69, (1994).
(6) L. S. Frost and A. V. Phelps	Phys. Rev., <u>136</u> , 1538, (1964).
(7) H. J. Oskam	Philips Res. Repts, <u>13</u> , 335, (1958).
(8) E. P. Gray and D. E. Kerr	Annals of Physics, <u>17</u> , 276, (1959).
(9) R. T. Bettinger and E. H. Walker	Phys. Fluids, <u>8</u> , 748, (1965).
(10) I. H. Hutchinson	"Principles of Plasma Diagnostics "
(Massachusetts Institute of T	echnology, Cambridge University Press).
(11) D. Smith and I. C. Plumb	J. Phys. D, <u>5</u> , 1226, (1972).
(12) Zhang Xiao-Liang « Thèse d'Université »	(Lisboa, 1994).
(13) L. Schott	« Plasma Diagnostics «
(Ed Lochte-Holtgreven North	n Holland, Amsterdam, p. 668, 1968).
(14) H. Abouelaziz "Thèse d'Université" (Renne	es, 1993).
(15) A. Canosa "Thèse d'Université "	(Rennes, 1991).
(16) W. H. Vernon and H. L. Schultz	" Methods of experimental Physics "
	(Vol 4, Part A).
(17) T. Chisholm and A. M. Stark	J. Phys. D, <u>3</u> , 1717, (1970).

$\begin{array}{c} \textbf{CHAPITRE VI}_{H_3^+ \text{ par la methode } {\scriptscriptstyle \mathsf{w}} \text{ falp-ms } {\scriptscriptstyle \mathsf{w}} \end{array}} \\ \textbf{CHAPITRE VI}_{H_3^+ \text{ par la methode } {\scriptscriptstyle \mathsf{w}} \text{ falp-ms } {\scriptscriptstyle \mathsf{w}} \end{array}}$

- VI. 1- RD des ions hydrures de gaz rares KrH⁺ et XeH⁺
 - VI. 1. 1 Introduction
 - VI. 1. 2 RD de KrH^+
 - VI. 1. 2. a Chimie de l'expérience
 - VI. 1. 2. b Présentation et discussion des résultats
 - VI. 1. 3 RD de XeH^+
 - VI. 1. 3. a Chimie de l'expérience
 - VI. 1. 3. b Présentation et discussion des résultats
 - VI. 1. 4 Justification théorique de nos résultats
- VI. 2- RD de l'ion H_3^+
 - VI. 2.1 Introduction
 - VI. 2. 2 Intérêt astrochimique de l'ion H_3^+
 - VI. 2. 3 Théorie
 - VI. 2. 3. a Processus « Full Direct »
 - VI. 2. 3. b Processus « Multisteps »
 - VI. 2. 4 Revue des résultats expérimentaux
 - VI. 2. 5 Production de l'ion H_3^+ à partir de l'ion Ar H^+
 - VI. 2. 5. a Structure ortho et para
 - VI. 2. 5. b Structure vibrationnelle
 - VI. 2. 5. b. a Modes normaux de vibration
 - VI. 2. 5. b. b Processus de relaxation de la vibration

Relaxation radiative

- Relaxation collisionnelle
- VI. 2. 5. c Chimie de l'expérience
- VI. 2. 5. d Présentation et discussion des résultats
- VI. 2. 6 Production de l'ion H_3^+ à partir de l'ion KrH⁺
 - VI. 2. 6. a Chimie de l'expérience
 - VI. 2. 6. b Présentation et discussion des résultats
- VI. 2. 7 Synthèse et conclusion

VI. 1 RD des ions hydrures de gaz rares KrH⁺ et XeH⁺

VI. 1. 1 Introduction

La famille des ions hydrures de gaz rare comprend HeH⁺, NeH⁺, ArH⁺, KrH⁺, XeH⁺ et RnH⁺. Jusqu'à présent, la RD de HeH⁺ ⁽¹⁻⁴⁾ a fait l'objet de la quasi-totalité des études expérimentales menées sur cette famille. Cet ion ne peut être étudié qu'avec des techniques en faisceaux (« Merged Beams, Storage Ring ») car l'hélium est utilisé comme gaz porteur dans les techniques de post décharge en écoulement (FALP). Les études « Merged Beams » de HeH⁺ ont montré que sa vitesse de RD est faible ; elle est inférieure à 5 10⁻⁹ cm³ s⁻¹ à 300°K. La RD de NeH⁺ n'a été étudiée que théoriquement ⁽⁴⁾ et sa vitesse de RD est prédite faible. Aucune étude n'existe sur la RD de ArH⁺ ; cet ion est trop lourd pour être étudié par « Merged Beams » et ne peut également pas l'être par FALP car il réagit très rapidement avec H₂ pour former l'ion H₃⁺. Une seule étude, due à Geoghegan et al (1991)⁽⁵⁾, traite de la RD de KrH⁺ et XeH⁺ ; nous y reviendrons lorsque nous discuterons nos résultats.

Nous comptons procéder comme suit : pour chacun des deux ions étudiés, nous décrirons la chimie de l'expérience qui sera suivie d'une discussion de la vitesse de RD obtenue. Nous proposerons enfin une justification théorique de nos résultats qui nous permettra de formuler quelques prédictions.

VI. 1. 2 RD de KrH^+

VI. 1. 2. a Chimie de l'expérience

Le buffer utilisé est l'hélium (paragraphe V. 6. 1). Nous avons délibérément travaillé à pression élevée (1,9 Torr) pour détruire l'ion non recombinant He⁺ produit au sein de la décharge. En aval de la décharge, le plasma est dominé par He₂⁺ et He^m. L'injection d'argon à contre courant, permet de détruire l'hélium métastable par ionisation Penning ainsi que l'ion He₂⁺, et de convertir le plasma en un plasma d'ions Ar⁺. Ce dernier est lui même converti en un plasma d'ions H₃⁺ par injection d'un débit suffisant d'hydrogène. Le transfert protonique de H₃⁺ vers Kr, dont les affinités ⁽⁶⁾ respectives sont 97,5 kcal mol⁻¹ et 103,7 kcal mol⁻¹, permet ensuite de former l'ion KrH⁺. L'hydrogène et le krypton sont injectés par la même porte ; leurs débits sont ajustés de telle sorte que l'ion KrH⁺ soit le seul ion présent en post-décharge. En effet, ces deux débits sont liés par la réaction ⁽⁷⁾

$$H_3^+ + Kr \stackrel{k}{\leftrightarrow} Kr H^+ + H_2 + 0,013 eV$$
 (VI. 1)

qui, du fait de sa faible exothermicité, est efficace dans les deux sens avec des vitesses k_1 et k_1 à 300°K de 1,1 10⁻⁹ cm³ s⁻¹ et 3,8 10⁻¹¹ cm³ s⁻¹. De plus, le transfert d'énergie vibrationnelle entre les ions H_3^+ et KrH⁺ n'est pas résonant ; cela implique qu'une dissipation de l'excitation vibrationnelle ait lieu entre ces deux ions, due à la succession de réactions k_1 et k_{-1} pour former finalement KrH⁺(v=0) . La vitesse de RD mesurée est donc attribuable à KrH⁺(v=0) .

VI. 1. 2. b Présentation et discussion des résultats

La figure 1 représente le graphe $\ln \left[\frac{[KrH_+]_{z=140mm}}{[KrH_+]_{z=0mm}} \right]$ en fonction de $\int_{z=0mm}^{z=140mm} n_e dz$ obtenu par

la procédure d'analyse dite à « z constant » (paragraphe V. 7. 5. b) ; l'origine arbitraire z=0 est prise au niveau de l'injecteur à aiguilles. Rappelons qu'avec cette méthode, nous nous fixons une position dans l'écoulement et faisons varier la densité électronique. Comme la concentration en impuretés est constante, nous pouvons nous affranchir du terme de destruction de KrH⁺ par ces impuretés, qui est constant pour un z donné.

La pente de la droite donne la vitesse de recombinaison dissociative de $KrH^+(v = 0)$, soit :

$$\alpha$$
(T_e=300°K)=1,15 10⁻⁸ cm³ s⁻¹ (VI. 2)

Réactions chimiques	Vitesses de réaction	τ(µs)	Références
$He^m + Ar \rightarrow Ar^+ + He + e$	$10^{-10} \text{ cm}^3 \text{ s}^{-1}$	10	(8)
$He^++2He \rightarrow He_2^++He$	8,3 10^{-32} cm ⁶ s ⁻¹	3240	(9)
$\text{He}_2^+ + \text{Ar} \rightarrow \text{Ar}^+ + 2\text{He}$	$2 \ 10^{-10} \ \mathrm{cm}^3 \ \mathrm{s}^{-1}$	5	(10)
$\mathrm{Ar^{+}} + \mathrm{H_{2}} \rightarrow \mathrm{ArH^{+}} + \mathrm{H}$	$10^{-9} \text{ cm}^3 \text{ s}^{-1}$	10	(10)
$\operatorname{ArH}^+ + \operatorname{H}_2 \to \operatorname{H}_3^+ (v \le 5) + \operatorname{Ar}$	$10^{-9} \text{ cm}^3 \text{ s}^{-1}$	10	(10)
$\mathrm{H_3^+}(3 \le \mathrm{v} \le 5) + \mathrm{Ar} \to \mathrm{Ar}\mathrm{H^+} + \mathrm{H_2}$	$7 \ 10^{-10} \ \mathrm{cm}^3 \ \mathrm{s}^{-1}$	1	(11)
$H_3^+ + Kr \rightarrow KrH^+ + H_2$	$1,1 \ 10^{-9} \ \mathrm{cm}^3 \ \mathrm{s}^{-1}$	10	(7)
$\mathrm{KrH}^+ + \mathrm{H}_2 \rightarrow \mathrm{H}_3^+ + \mathrm{Kr}$	$3,8 \ 10^{-11} \ \mathrm{cm}^3 \ \mathrm{s}^{-1}$	260	(7)
$\mathrm{KrH}^{+}(\mathrm{v}=0) + \mathrm{e} \rightarrow \mathrm{Kr} + \mathrm{H}$	$<10^{-8} \text{ cm}^3 \text{ s}^{-1}$	>6290	Ce travail

Tableau récapitulatif de la chimie impliquée dans la RD de KrH⁺

Conditions expérimentales

Thermodynamiques	Pression	P = 1,9 Torr
	Température	$T = 300^{\circ} K$
	Débits	$Q_{\rm He} = 20,21 {\rm min}^{-1}$ atm
		$Q_{Ar} = 355 \text{ cm}^3 \text{ min}^{-1} \text{ atm}$
		$Q_{H2} = 35 \text{ cm}^3 \text{ min}^{-1} \text{ atm}$
		$Q_{Kr} = 28 \text{ cm}^3 \text{ min}^{-1} \text{ atm}$
	Densités	$n_{\rm He} = 6.1 \ 10^{16} \ {\rm cm}^{-3}$
		$n_{Ar} = 1,1 \ 10^{15} \ cm^{-3}$
		$n_{\rm H2} = 1,0 \ 10^{14} {\rm cm}^{-3}$
		$n_{Kr} = 8,3 \ 10^{13} \ cm^{-3}$
Hydrodynamiques		$v_{bulk} = 2420 \text{ cm s}^{-1}$
		$\tau_{\rm Hydro}$ = 4130 μ s / 10 cm

Pour deux raisons, cette valeur doit être interprétée comme une limite supérieure :

• une faible proportion d'ions H_3^+ demeure dans le plasma et se recombine avec les électrons.

• la contribution de la diffusion ambipolaire à la perte d'ionisation doit être considérée. Gray et Kerr⁽¹²⁾ ont proposé un paramètre sans dimension qui définit le processus qui, de la recombinaison en volume ou de la diffusion, contrôle le plasma :

$$\beta = \frac{\alpha_{\text{RDKrH}+} n_{e0} \Lambda^2}{D_{a(\text{KrH}+/\text{He})}}$$
(VI. 3)

La vitesse de recombinaison en volume est celle de recombinaison dissociative $\alpha_{RDKrH_{+}}$. La densité électronique initiale est n_{eo} tandis que la longueur de diffusion du mode fondamental est Λ pour une cavité cylindrique de longueur infinie. Le coefficient de diffusion ambipolaire est $D_{a(KrH_{+}/He)}$. Si β >>1 , le plasma est contrôlé par la recombinaison dissociative, si β <<1, il l'est par la diffusion.

Avec $\alpha_{RDKrH_+} < 1,15 \ 10^{-8} \ cm^3 \ /s, \ n_{eo} = 1,6 \ 10^{10} \ cm^{-3}$, $\Lambda = 1,75 \ cm$ et $D_{a(KrH_+/He)} = 450 \ cm^2 \ s^{-1}$, nous obtenons $\beta < 1,1$. Le plasma est donc conjointement contrôlé par la RD et la diffusion.

La RD de KrH⁺ a été étudié par Geoghegan et al $(1991)^{(5)}$ qui ont proposé une limite supérieure de 2 10⁻⁸ cm³ s⁻¹ à T_e = 300°K. Bien qu'il semble que l'ion non recombinant He⁺ ait été présent dans leur plasma, cette valeur est assez proche de la nôtre.

Figure 1 : Graphe de KrH⁺

VI. 1. 3 RD de XeH⁺

VI. 1. 3. a Chimie de l'expérience

La procédure pour former XeH⁺ s'apparente à celle précédemment utilisée pour former KrH⁺. Il s'agit de convertir un plasma d'Ar⁺ en un plasma d'H₃⁺ puis d'utiliser le transfert protonique de H₃⁺ vers Xe pour former XeH⁺ selon :

$$H_3^+ + Xe \rightarrow XeH^+ + H_2$$
 (VI. 4)

Ce transfert est beaucoup plus exothermique que celui vers le krypton car les affinités⁽⁶⁾ protoniques de H₂ et Xe sont respectivement 97,5 kcal mol⁻¹ et 114,2 kcal mol⁻¹; la réaction inverse n'a pas lieu. Bien que la vitesse de transfert protonique H₂/ Xe ne soit pas disponible dans la littérature, le taux de Langevin de 2,8 10^{-9} cm³ s⁻¹ en constitue une bonne approximation. Le débit de xénon a été ajusté pour que la conversion soit complète entre le plasma d'H₃⁺ et le plasma de XeH⁺.

Réactions chimiques	Vitesses de réaction	τ(µs)	Références
$He^m + Ar \rightarrow Ar^+ + He + e$	$10^{-10} \text{ cm}^3 \text{ s}^{-1}$	55	(8)
$\mathrm{He^{+}} + 2\mathrm{He} \rightarrow \mathrm{He_{2}^{+}} + \mathrm{He}$	8,3 10^{-32} cm ⁶ s ⁻¹	3350	(9)
$\text{He}_2^+ + \text{Ar} \rightarrow \text{Ar}^+ + 2\text{He}$	$2 \ 10^{-10} \ \mathrm{cm}^3 \ \mathrm{s}^{-1}$	25	(10)
$Ar^+ + H_2 \rightarrow ArH^+ + H$	$10^{-9} \text{ cm}^3 \text{ s}^{-1}$	15	(10)
$\operatorname{ArH}^+ + \operatorname{H}_2 \to \operatorname{H}_3^+ (v \le 5) + \operatorname{Ar}$	$10^{-9} \text{ cm}^3 \text{ s}^{-1}$	15	(10)
$\mathrm{H_3^+}(3 \leq \mathrm{v} \leq 5) + \mathrm{Ar} \rightarrow \mathrm{Ar}\mathrm{H^+} + \mathrm{H_2}$	$7 \ 10^{-10} \ \mathrm{cm}^3 \ \mathrm{s}^{-1}$	10	(11)
$H_3^+ + Xe \rightarrow XeH^+ + H_2$	$2,8 \ 10^{-9} \ \mathrm{cm}^3 \ \mathrm{s}^{-1}$	20	
$XeH^+ + e \rightarrow Xe + H$	$8,3 \ 10^{-8} \ \mathrm{cm}^3 \ \mathrm{s}^{-1}$	3010	Ce travail

Tableau récapitulatif de la chimie impliquée dans la RD de XeH⁺

Conditions expérimentales

Thermodynamiques	Pression	P = 1.9 Torr
	Température	$T = 300^{\circ} K$
	Débits	$Q_{\rm He} = 20 \ 1 \ {\rm min}^{-1} \ {\rm atm}$
		$Q_{Ar} = 64 \text{ cm}^3 \text{ min}^{-1} \text{ atm}$
		$Q_{H2} = 22 \text{ cm}^3 \text{ min}^{-1} \text{ atm}$
		$Q_{Xe} = 5 \text{ cm}^3 \text{ min}^{-1} \text{ atm}$
	Densités	$n_{\rm He} = 6 \ 10^{16} \ {\rm cm}^{-3}$
		$n_{Ar} = 1.9 \ 10^{14} \ cm^{-3}$
		$n_{\rm H2} = 6,6 \ 10^{13} {\rm cm}^{-3}$
		$n_{Xe} = 1.6 \ 10^{13} \ cm^{-3}$
Hydrodynamiques		$v_{bulk} = 2400 \text{ cm s}^{-1}$
		$\tau_{\rm Hydro} = 4170 \ \mu s \ / \ 10 \ cm$

VI. 1. 3. b Présentation et discussion des résultats

La figure 2 représente le graphe $\ln \left[\frac{[XeH_+]_{z=140mm}}{[XeH_+]_{z=0mm}} \right]$ en fonction de $\int_{z=0mm}^{z=140mm} n_e dz$ obtenu par

la procédure d'analyse dite à « z constant » dont nous avons rappelé les caractéristiques plus haut.

La pente de la droite donne la vitesse de recombinaison dissociative de XeH⁺, soit :

$$\alpha$$
(Te=300°K)=8,3 10⁻⁸ cm³ s⁻¹ (VI. 5)

Ce résultat est en contradiction avec celui de Geoghegan et al $(1991)^{(5)}$ qui donnent, comme pour KrH⁺, une limite supérieure de 4 10⁻⁸ cm³ s⁻¹ pour la vitesse de RD de XeH⁺. La présence de l'ion non recombinant He⁺ dans l'expérience de Birmingham ne semble pas étranger au désaccord avec nos résultats.

VI. 1. 4 Justification théorique de nos résultats

La recombinaison dissociative directe procède par le croisement des courbes de potentiel de l'ion recombinant AB^+ et de l'état dissociatif AB^{**} qui possède en général une limite asymptotique ionique $A^+ + B^-$. Tel est le cas d'H₂⁺ qui recombine efficacement avec les électrons et dont l'état dissociatif H₂(${}^{1}\Sigma_{g}^{+}$) impliqué dans la RD, présente une limite asymptotique H⁺ +H⁻. A contrario, nous montrons que de telles limites ne peuvent exister pour certains ions hydrures de gaz rares, ce qui implique que les états dissociatifs correspondants n'existent pas. La figure 3 ⁽¹³⁾ présente les potentiels d'ionisation (PI) des atomes de gaz rares ainsi que de l'hydrogène atomique.

Figure 3 : Potentiels d'ionisation des atomes de gaz rares et de l'hydrogène atomique

Les potentiels d'ionisation (PI) de He, Ne, Ar et Kr sont supérieurs à celui de l'hydrogène atomique ; les limites asymptotiques des états dissociatifs HeH^{**}, NeH^{**}, ArH^{**} et KrH^{**} ne peuvent donc être que He⁻ +H⁺, Ne⁻ +H⁺, Ar⁻ +H⁺ et Kr⁻ +H⁺. Or les anions de gaz rares He⁻, Ne⁻, Ar⁻ et Kr⁻ n'existent pas car leurs atomes neutres respectifs possèdent des cortèges électroniques complets. Les RD directes de HeH⁺, NeH⁺, ArH⁺ et KrH⁺ sont alors inhibées par l'absence d'états dissociatifs à limite asymptotique ionique. Cela corrobore en particulier nos résultats sur la RD de KrH⁺. En revanche, les PI de Xe et Rn sont inférieurs à celui de l'hydrogène atomique ce qui implique l'existence d'états dissociatifs ayant pour limites asymptotiques Xe⁺ +H⁻ et Rn⁺ +H⁻. Ces états peuvent fournir une stabilisation efficace au processus de RD et justifier nos résultats sur la RD de XeH⁺. De plus, Petsalakis et al (1992)⁽¹⁴⁾ ont procédé à un calcul adiabatique des courbes d'énergie potentielle des états excités de XeH ; ces dernières présentent des irrégularités dues à des croisements évités avec une courbe dont la limite asymptotique est Xe⁺ +H⁻.

Nous justifions l'ensemble de nos résultats par les considérations décrites ci-dessus et prédisons que les RD de NeH⁺ et ArH⁺ ne sont pas efficaces tandis que celle de RnH⁺ l'est.

<u>VI. 2 - RD de l'ion H_3^+ </u>

VI. 2. 1 Introduction

L'ion H_3^+ joue un rôle central dans la chimie de nombreux plasmas. Il revêt également un intérêt capital pour la théorie de la recombinaison dissociative. En effet, de nombreux processus de RD ont été découverts suite à la controverse sur l'ion H_3^+ (v = 0); nous y reviendrons largement au cours de ce paragraphe.

Le contenu de ce dernier est le suivant : nous rappellerons brièvement l'intérêt astrochimique d' H_3^+ qui sera suivi d'un aperçu théorique. Un historique des études sur H_3^+ permettra ensuite d'illustrer la controverse qui fait « rage » depuis une quarantaine d'années. Puis deux modes de production de l'ion H_3^+ seront détaillés, ainsi que sa structure vibrationnelle. Nous présenterons enfin nos résultats.

VI. 2. 2 Intérêt astrochimique de l'ion H_3^+

Certaines modélisations de nuages interstellaires denses ont récemment révélé un comportement bistable des solutions obtenues à l'état stationnaire pour certains jeux de paramètres physiques (température, pression...). En raison de l'incertitude expérimentale sur certaines constantes de vitesse de réactions chimiques telle la vitesse de RD de l'ion $H_3^+(v=0)$, ces dernières doivent être considérées comme des paramètres de contrôle des modèles au même titre que les autres paramètres physiques. La figure⁽¹⁵⁾ (4) illustre la dépendance de l'ionisation fractionnaire des nuages vis à vis de la vitesse de RD de l'ion $H_3^+(v=0)$ à 300 K. La gamme de vitesses comprises entre 7 10^{-8} cm³ s⁻¹ et 3 10^{-7} cm³ s⁻¹ correspond à des solutions bistables, solutions intermédiaires entre les deux branches stables HIP (Phase de forte ionisation) et LIP (Phase de faible ionisation). Les chimies de ces dernières sont très différentes : la première est gouvernée par les transferts de charges tandis que la seconde est dominée par les transferts de protons.

Paramètres physiques :

La connaissance de la vitesse de RD de l'ion $H_3^+(v=0)$ est donc vitale à la modélisation des nuages interstellaires denses.

Figure 4 : Dépendance de l'ionisation fractionnaire vis à vis de la RD d' H_3^+

VI. 2. 3 Théorie

La figure 5 présente les courbes d'énergie potentielle impliquées⁽¹⁶⁻¹⁷⁾ dans la recombinaison dissociative de l'ion H_3^+ en symétrie C_{2v} .

L'état résonant $H_3(^2A_1)$, dont la limite asymptotique est $H_2^+(^2\Sigma_g^+) + H^-(^1S)$, gouverne la RD. La courbe d'énergie potentielle qui lui est associée, croise celle de l'état électronique fondamental de l'ion H_3^+ autour du niveau v = 3. La fonction d'onde vibrationnelle de l'ion $H_3^+(v = 3)$ bénéficie donc d'un bon recouvrement avec celle de l'état résonant ; la RD directe est efficace à température ambiante (basse énergie). A contrario, la fonction d'onde vibrationnelle de $H_3^+(v = 0)$ présente un mauvais recouvrement avec celle de l'état résonant ; le processus direct ne peut donc être efficace à température ambiante pour $H_3^+(v = 0)$. Comment expliquer alors que dans ce dernier cas, la RD semble être d'une certaine efficacité malgré le mauvais recouvrement des fonctions d'onde vibrationnelles ?

Plusieurs processus peuvent être évoqués tels le «Full Direct » (O'Malley 1989)⁽¹⁸⁾, le «Multisteps »(Bates 1993)⁽¹⁹⁾ ou la RD par couplage de «l'Opérateur Energie Cinétique des Noyaux » (Guberman 1994)⁽²⁰⁾. Les deux premiers processus font intervenir des états de Rydberg dont le rôle a été expérimentalement mis en évidence par Mitchell et al (1995)⁽²¹⁾.

VI. 2. 3. a Processus « Full Direct »⁽²²⁾

Le niveau v' = 10 de l'état $H_3(2p^2A''_2)$ est situé juste au-dessus de celui v = 0 de l'ion $H_3^+(^1A_1)$; une transition à température ambiante (énergie thermique) est concevable entre ces deux états. Cette transition est elle-même suivie d'une deuxième entre l'état de Rydberg $H_3(2p^2A''_2)$ et l'état résonant $H_3(^2A_1)$; ce dernier se prédissocie alors vers l'état $H_3(^2B_2)$ dont la limite asymptotique est $H_2(^3\Sigma_u^+) + H(n=1)$. Or l'état $H_2(^3\Sigma_u^+)$ est répulsif pour donner H(n = 1) + H(n = 1); le canal de sortie du mécanisme proposé est donc 3H (n = 1).

Figure 5 : Courbes d'énergie potentielle impliquées dans la RD de H_3^+

VI. 2. 3. b Processus « Multisteps »⁽²³⁾

Ce mécanisme a été décrit au paragraphe (II. 5. 1). L'électron serait capturé par l'ion $H_3^+(^1A_1^{'})$ dans la symétrie équilatérale qui correspond à son état vibrationnel fondamental (paragraphe VI. 2. 5. b. a). S'en suivrait une succession de transitions $\Delta v = 1$ entre états de Rydberg (effet tunnel), avec pour étape finale la transition vers l'état dissociatif $H_3(^2E')$ de symétrie équilatérale.

VI. 2. 4 Revue des résultats expérimentaux

L'histoire présentée dans ce paragraphe est synthétisée sur la figure 6. La saga de la recombinaison dissociative d'H₃⁺ a débuté voici quarante ans avec le travail précurseur de Persson et al (1955)⁽²⁴⁾. A 300°K, ils mesurèrent une vitesse de 3 10⁻⁸ cm³ s⁻¹ et conclurent alors à la non-recombinaison d'H₃⁺. Il semble néanmoins probable que leur plasma ait été dominé par H^+ au lieu d' H_3^+ . L'ion H^+ ne recombine que radiativement avec les électrons et maintient l'ionisation du plasma, d'où une sous-estimation de la vitesse de RD d'H₃⁺. En 1973, Leu et al⁽²⁵⁾ étudièrent la RD d'H₃⁺ à l'aide d'une post décharge stationnaire et proposèrent une valeur $\alpha_{RD}(T_e = 300^{\circ} \text{K}) = 2,3 \ 10^{-7} \text{ cm}^3 \text{ s}^{-1}$. Bien qu'il soit important, l'état vibrationnel d' H_3^+ n'était pas précisé ; la RD d' H_3^+ était donnée pour efficace. En 1977, la technique « Merged Beams » a été employée par Auerbach et al⁽²⁶⁾ de l'Université Western Ontario Canada pour étudier H₃⁺. Ils attribuèrent également leurs mesures de sections efficaces à des ions faiblement excités, mais à la différence d'Adams, ils calculèrent une vitesse de recombinaison de 1,5 10^{-7} cm³ s⁻¹ à 300°K. Macdonald et al⁽²⁷⁾ reprirent les mesures de Leu et donnèrent une valeur de $\alpha_{RD}(T_e=287^{\circ}K)=1.5 \ 10^{-7} \text{ cm}^3 \text{ s}^{-1}$. Cette étude a été critiquée par Johnsen (1987)⁽²⁸⁾ qui montra que les mesures étaient entachées par la présence de CH₅⁺. Cet ion se recombine très rapidement avec les électrons et conduit donc à une surestimation de la vitesse de RD d' H_3^+ . La même année, Adams et al⁽²⁹⁾ utilisèrent un FALP et annoncèrent une limite supérieure de 2 10^{-8} cm³ s⁻¹ (300°K) pour des ions H₃⁺ faiblement excités, en accord avec les travaux de Persson. Au congrès de Goa $(1987)^{(30)}$, Adams et Smith annoncèrent une limite supérieure de 10^{-11} cm³ s⁻¹ pour la RD d'H₃⁺(v = 0) à température ambiante. Pour justifier leurs propos, ils se fondaient sur des similarités des vitesses de recombinaison d'He⁺, HeH⁺ et H₃⁺. En effet, l'ion atomique He⁺ ne se recombine avec les électrons que radiativement (<10⁻¹¹ cm³ s⁻¹) tandis que l'ion HeH⁺ se recombine lentement. La raison du peu d'efficacité de la RD d'HeH⁺ provient de l'absence de croisement des courbes d'énergie potentielle du moins pour ce qui concerne l'état électronique fondamental de l'ion avec un état dissociatif. De plus, l'étude d'Adams et Smith semblait corroborer les résultats théoriques de Michels⁽¹⁷⁾ selon lesquels la RD d'H₃⁺(v = 0) est lente en raison d'un croisement défavorable des courbes d'énergie potentielle. En 1988, Hus et al⁽³¹⁾ reprirent les précédentes mesures d'Auerbach. En modifiant la pression dans la source et en utilisant l'excitation dissociative pour sonder les niveaux vibrationnels d' H_3^+ , Hus obtint des résultats similaires à ceux d'Auerbach pour des ions excités mais des résultats dix fois plus faibles pour des ions $H_3^+(v=0)$, soit 1,6 10⁻⁸ cm³ s⁻¹ à 300°K. La résolution des seuils d'excitation dissociative n'était pas dénuée d'ambiguïtés. De plus, l'ionisation de certains états de Rydberg due à la RD d'H₃⁺ n'était pas encore prise en compte. En 1990, Amano⁽³²⁾ procéda à une étude spectroscopique par absorption IR qui lui permit d'étudier sélectivement la RD de l'ion H₃⁺(v=0). Une valeur $\alpha_{H_3^+(v=0)}$ de 1,8 10⁻⁷ cm³ s⁻¹ a été obtenue à 273°K. Cependant, Smith et Adams critiquèrent sévèrement cette étude en arguant qu'avec les densités électroniques auxquelles Amano travaillait, la recombinaison radiativo-collisionnelle (RRC) était très efficace :

$$\begin{array}{c} H_{3}^{+}+e+e \rightarrow H_{2}+H+e+h\nu & (VI. 6) \\ \rightarrow 3H+e+h\nu & (VI. 7) \end{array}$$

Les contradicteurs attribuaient donc la valeur mesurée à la RRC et non à la RD. Une erreur typographique s'était glissée dans l'article d'Amano ; les densités électroniques étaient surestimées d'un facteur 10. Van der Donk et al $(1991)^{(33)}$ reprirent les mesures de Hus pour tenter de lever l'ambiguïté sur les seuils d'excitation dissociative des états v = 0 et v = 1. Ils utilisèrent une source radiofréquence pour laquelle le temps de résidence des ions peut aller jusqu'à la milliseconde. Ils parvinrent à ne produire que l'ion $H_3^+(v = 0)$ et confirmèrent que

les sections efficaces mesurées par Hus lui était attribuable. Une valeur de la vitesse de RD extrapolée à 300°K donnait 1,3 10^{-8} cm³ s⁻¹, les ions H₃⁺(v = 0) ne semblaient donc pas se recombiner avec les électrons. L'ionisation de certains états de Rydberg par le déflecteur électrostatique qui sépare les ions des neutres, commençait à être envisagé comme explication à des sections efficaces faibles. Sur ces entrefaites, Canosa et al⁽²²⁾ procédèrent en 1992 à la mesure de la RD d' H_3^+ par la technique FALP. Bien que la théorie prédise une vitesse faible pour cause de croisement défavorable des courbes d'énergie potentielle, les auteurs de 1,5 10^{-7} cm³ s⁻¹ à 300°K. En 1993, Smith et al⁽³⁴⁾ mesurèrent une vitesse remesurèrent les vitesses de RD d'H₃⁺ à 300°K et observèrent un étrange comportement du graphe $\frac{1}{n} = \text{fct}(z)$. Ce dernier présentait dans la lointaine post-décharge, une courbure que les auteurs attribuèrent à la RD d' $H_3^+(v = 0)$. Les mêmes auteurs assignèrent à la pente plus prononcée de la proche post-décharge, la RD d'ions H_3^+ plus excités (v>3). Les vitesses de RD d' $H_3^+(v = 0)$ et $H_3^+(v>3)$ ont été respectivement mesurées à (1-2) 10^{-8} cm³ s⁻¹ et 1,3 10^{-7} cm³ s⁻¹. Cet interprétation du graphe $\frac{1}{n}$ = fct(z) a été vivement contestée par Gougousi et al (1995)⁽³⁵⁾; nous y reviendrons. Nous formulons une autre critique quant à la présence d'ions non-recombinant He⁺ qui maintiennent l'ionisation du plasma et conduisent à une sous estimation de la vitesse de recombinaison dissociative d'H₃⁺. L'année 1993 a vu l'avènement d'une technique inédite pour l'étude de la recombinaison dissociative : l'anneau de stockage. Le temps de stockage avant mesure des sections efficaces de RD (quelques secondes), permet aux ions dotés d'un moment dipolaire permanent de se relaxer radiativement vers le niveau vibrationnel fondamental. Sundström et al⁽³⁶⁾ ont ainsi mesuré les sections efficaces d' $H_3^+(v =$ 0), à partir desquelles une loi de variation en température a été calculée :

$$\alpha_{\rm H_3^+(v=0)}=1,15\ 10^{-7} \left(\frac{300}{T_e}\right)^{0.65} {\rm cm}^3 {\rm s}^{-1}$$
 (VI. 8)

La RD d'H₃⁺(v = 0) était donc à nouveau donnée pour efficace à température ambiante. Mitchell (1995)⁽²¹⁾ prolongea les mesures de Van der Donk par une étude détaillée de l'ionisation des états de Rydberg à longue durée de vie. En effet, la RD d'H₃⁺ procède par le mécanisme indirect et produit des états de Rydberg de masse Z = 3, dont certains possèdent un nombre quantique principal n* suffisant pour être ionisé au niveau du déflecteur. Ces états sont tels que⁽³⁷⁾ :

$$n* > \left(\frac{6,8x10^8 Z^3}{E}\right)^{1/4} = 36$$
 (VI. 9)

L'expérience a consisté à réduire le champ électrostatique E de 3,5 kV cm⁻¹ à environ 220V cm⁻¹. Par rapport aux mesures de Van der Donk sur $H_3^+(v = 0)$, les sections efficaces de RD se sont vues multipliées par un facteur cinq et sont dorénavant en accord avec la plupart des autres données expérimentales engrangées sur le sujet. Gougousi et al (1995)⁽³⁵⁾ procédèrent à une nouvelle mesure à l'aide d'un FALP. Ils observèrent la même anomalie que Smith mais au lieu d'assigner la courbure observée à différents niveaux vibrationnels, ils proposèrent un coefficient de déionisation du plasma (dépendant de z) plutôt qu'un coefficient de recombinaison dissociative (indépendant de z). Selon cette hypothèse, le coefficient de déionisation engloberait toutes les pertes d'ionisation sauf celle due à diffusion ; la RD en serait une. Une autre serait due à la stabilisation de certains états de Rydberg H_3^{Ryd} , par redistribution de leurs moments angulaires 1 (collision avec des électrons, avec H_2 , microchamp électrique). La conséquence de ce travail est que l'étude de la déionisation d'un plasma dans lequel la RD joue un rôle, ne signifie pas nécessairement l'étude de cette RD.

VI. 2. 5 Production de H_3^+ (v≤2) à partir de ArH⁺

L'ion H_3^+ est obtenu par injection d'hydrogène dans un plasma d'Ar⁺ selon :

$$Ar^{+} + H_{2} \xrightarrow{k} ArH^{+} + H + 1,52 \text{ eV}$$
(VI. 10)

$$ArH^{+} + H_{2} \leftrightarrow H_{3}^{+} + Ar + 0.57 \text{ eV}$$
(VI. 11)

La réaction (VI. 10) ainsi que celle de transfert protonique (VI. 11) sont très rapides⁽³⁸⁾ (10⁻⁹ cm³ s⁻¹ à 300°K). Leurs exothermicités combinées (2,07eV) permettent de peupler les niveaux vibrationnels d'H₃⁺ jusqu'au niveau v = 5. La réaction inverse du transfert protonique est exothermique pour des énergies internes d'H₃⁺ supérieures à 0,57 eV, soit pour les niveaux 3 < v < 5; les ions correspondants sont rapidement détruits. Les ions H₃⁺ qui survivent sont donc dans l'état $v \le 2$.

VI. 2. 5. a Structure ortho et para

Suivant l'orientation individuelle des spins des protons, deux espèces d'ions H_3^+ coexistent : les structures ortho et para. La première espèce correspond à l'orientation dans le même sens des deux spins tandis que le troisième est en sens opposé. La seconde espèce correspond à l'orientation dans le même sens des trois spins. Ces deux structures d' H_3^+ n'ont pas des probabilités identiques de RD. Comme le temps nécessaire à l'établissement de l'équilibre entre les densités en espèce ortho et para est petit devant le temps caractéristique de RD, seul un coefficient moyen de RD d' H_3^+ peut être mesuré. Cet équilibre est gouverné par la réaction⁽³⁹⁾ :

$$H_3^+(\text{ortho}) + H_2 \leftrightarrow H_2 + H_3^+(\text{para})$$
 (VI. 12)

dont la vitesse n'est pas connue mais est néanmoins supposée rapide. La proportion ortho/para est communément fixée à 1/1.

VI. 2. 5. b Structure vibrationnelle

<u>VI. 2. 5. b. a Modes normaux de vibration</u> L'ion H₃⁺ présente deux modes normaux de vibration⁽⁴⁰⁻⁴¹⁾ : - le mode symétrique équilatéral (« breathing mode »)

Ce mode est caractérisé par le groupe D_{3h} .

- le mode asymétrique isocèle (« bending mode »)

Ce mode est caractérisé par le groupe C_{2v} .

Le diagramme 7 suivant présente les trois niveaux vibrationnels $d'H_3^+$ que le mode de production cité plus haut permet de peupler.

Nous souhaitons mesurer la RD de l'ion H_3^+ dans son état vibrationnel fondamental ; encore faut-il contrôler cet état. Dans un premier temps, nous allons considérer les processus de désexcitation radiative et collisionnelle.

VI. 2. 5. b. b Processus de relaxation de la vibration

Relaxation radiative

Les transitions dipolaires électriques ne concernent que les transitions entre niveaux de symétries différentes, soient $(10^\circ) \rightarrow (01^1)$ et $(01^1) \rightarrow (00^\circ)$. Les durées de vie radiatives des niveaux (10°) et (01^1) sont respectivement de 1,2s ⁽⁴²⁾ et 4ms. Ces durées sont grandes devant le temps caractéristique de RD ; certains ions vibrationnellement excités peuvent survivre, même en lointaine post-décharge.

La transition quadripolaire électrique $(10^\circ) \rightarrow (00^\circ)$ a une probabilité beaucoup plus faible que les transitions dipolaires. La durée de vie du niveau (10°) vis à vis de cette transition, est extrêmement longue.

Figure 7 : Structure vibrationnelle de H_3^+

Relaxation collisionnelle

Nous considérons dorénavant la réaction de quenching :

$$\mathbf{H}_{3}^{+}(\mathbf{v}) + \mathbf{H}_{2} \xrightarrow{\mathbf{k}_{q}} \mathbf{H}_{3}^{+}(\mathbf{v}' < \mathbf{v}) + \mathbf{H}_{2}$$
(VI.13)

Le travail de Kim et al $(1974)^{(43)}$ abonde pour une certaine efficacité de cette réaction. Cependant, seule une vitesse moyenne de désexcitation est mesurée dans cette étude, et il est fort probable que la vitesse de quenching soit fonction du niveau vibrationnel initial v de l'ion H_3^+ .

La valeur $k_q = 2,7 \ 10^{-10} \ cm^3 \ s^{-1}$ proposée par Kim, se réfère certainement à des niveaux v>3 car d'après Blakley et al $(1977)^{(44)}$, le quenching est beaucoup moins efficace pour des niveaux vibrationnels faiblement excités. Ces auteurs donnent un encadrement des vitesses de quenching $10^{-12} < k_q < 10^{-11} \ cm^3 \ s^{-1}$, sans pouvoir donner des valeurs précises état par état.

Vu les caractéristiques des deux processus de relaxation considérés - radiative et collisionnelle -, il est clair que les ions H_3^+ produits à partir d'ArH⁺, le sont dans des niveaux $v \le 2$ et ne sont pas tous relaxés sur le fondamental.

VI. 2. 5. c Chimie de l'expérience

Le buffer d'hélium passe à travers la cavité micro-onde qui produit en aval un plasma constitué d'He⁺, He₂⁺ et He^m. L'ion recombinant He⁺ demeure en post-décharge ; la pression (0,5 Torr) n'est pas suffisante pour le convertir en He₂⁺ par réaction à trois corps. Notre méthode d'analyse pour mesurer les vitesses de RD tient compte de cette présence. L'injection d'argon à contre courant permet de détruire l'hélium métastable par ionisation Penning :

$$He^{m} + Ar \rightarrow Ar^{+} + He + e \qquad (VI. 14)$$

Cette injection permet également de détruire rapidement l'ion He₂⁺ selon :

$$\operatorname{He}_{2}^{+} + \operatorname{Ar} \to \operatorname{Ar}^{+} + 2\operatorname{He}$$
 (VI. 15)

A ce stade, le plasma est uniquement constitué d'ions He⁺ et Ar⁺. L'injection d'hydrogène pur (Air Liquide N55) par les aiguilles, permet de convertir le plasma d'Ar⁺ en un plasma d'H₃⁺ suivant les réactions (VI. 10) et (VI. 11). Les ions He⁺ ne réagissent que très lentement avec H₂ (<10⁻¹³ cm³ s⁻¹). Les figures 8 et 9 présentent des spectres de masse pris respectivement en proche et lointaine post-décharge pour des débits $Q_{He}=24$ l min⁻¹ atm, $Q_{Ar}=135$ cm³ min⁻¹ atm, $Q_{H2}=300$ cm³ min⁻¹ atm (P=0,5 Torr) et pour une densité électronique initiale élevée. L'ion H₃⁺ est détruit par recombinaison dissociative tandis que l'ion He⁺ demeure dans l'écoulement.
Deux remarques s'imposent :

• les ions très recombinants H_3O^+ et N_2H^+ sont absents de la post-décharge. Une limite supérieure de leurs concentrations a pu être évaluée à :

$$[H_3O^+], [N_2H^+] \le 10^{-3}([H_3^+] + [He^+])$$

l'ion ArH⁺ en équilibre avec H₃⁺ dans la réaction (VI. 11), est également absent de la post-décharge. Son éventuelle présence aurait révéler l'existence d'ions H₃⁺(v≥ 3).

Le tableau récapitulatif de la chimie impliquée dans la RD d' $H_3^+(v<2)$ est présenté ci-dessous ; les conditions expérimentales sont précisées.

<u>Réactions chimiques</u>	Vitesses de réaction	τ(μs)	Références
$He^m + Ar \rightarrow Ar^+ + He + e$	$10^{-10} \mathrm{cm}^3 \mathrm{s}^{-1}$	115	(8)
$\mathrm{He^{+}} + 2\mathrm{He} \rightarrow \mathrm{He_{2}^{+}} + \mathrm{He}$	8,3 10^{-32} cm ⁶ s ⁻¹	47065	(9)
$\text{He}_2^+ + \text{Ar} \rightarrow \text{Ar}^+ + 2\text{He}$	$2 \ 10^{-10} \ \mathrm{cm}^3 \ \mathrm{s}^{-1}$	55	(10)
$\mathrm{Ar^{+}} + \mathrm{H_{2}} \rightarrow \mathrm{ArH^{+}} + \mathrm{H}$	$10^{-9} \text{ cm}^3 \text{ s}^{-1}$	5	(10)
$\operatorname{ArH}^+ + \operatorname{H}_2 \to \operatorname{H}_3^+ (v \le 5) + \operatorname{Ar}$	$10^{-9} \text{ cm}^3 \text{ s}^{-1}$	5	(10)
$\mathrm{H_3^+(3 \le v \le 5) + Ar} \rightarrow \mathrm{ArH^+ + H_2}$	$7 \ 10^{-10} \ \mathrm{cm}^3 \ \mathrm{s}^{-1}$	15	(11)
$H_3^+(v \le 2) + e \rightarrow \text{produits}$	7,3 10^{-8} cm ³ s ⁻¹	275	Ce travail

Tableau récapitulatif de la Chimie impliquée dans la RD de H₃⁺

Figure 8 : Spectre de masse en proche post-décharge

Figure 9 : Spectre de masse en lointaine post-décharge

Conditions expérimentales

VI. 2. 5. d Présentation et discussion des résultats

Nos investigations sur H_3^+ ont été menées à différentes pression de chambre et à différents débits d'hydrogène (Tableau 11). Nous avons choisi de détailler l'étude faite suivant les conditions citées au paragraphe précédent.

Le graphe $\ln \left[\frac{\left[H_3^+ \right]_{z=60 \text{mm}}}{\left[H_3^+ \right]_{z=0 \text{mm}}} \right]$ en fonction de $\int_{z=0 \text{mm}}^{z=60 \text{mm}} n_e dz$ est obtenu par la procédure d'analyse dite à

"z constant" ; il est représenté figure 10.

Comme préalable à toute discussion, nous souhaitons faire les remarques suivantes :

- malgré la dispersion de quelques points, le graphe obtenu est une droite ; aucun effet de courbure n'est observé.
- les investigations ont été menées dans une large gamme de densités électroniques initiales, qui s'étendent de 1,3 10⁹ à 5,2 10¹⁰ cm⁻³. La dynamique de notre étude est appréciable.
- la pente de la droite donne la vitesse de recombinaison dissociative de $H_3^+(v \le 2)$:

 $\alpha_{(v\leq 2)}(T_e=300^{\circ}K)=7,3 \ 10^{-8} \ cm^3 \ s^{-1}$ (VI. 16)

Figure 10 : Graphe de $H_3^+(v<2)$

Nous souhaitons mener une discussion centrée principalement sur les différentes études FALP faites sur H_3^+ : celle d'Adams et al(1984)⁽²⁹⁾, de Canosa et al(1992)⁽²²⁾, de Smith et al(1993)⁽³⁴⁾ et de Gougousi et al(1995)⁽³⁵⁾. Dans des travaux indépendants, Smith et Gougousi observèrent un comportement inexplicable en termes de recombinaison binaire du graphe $\frac{1}{n_e}$ =fct(z). La vitesse de RD d'H₃⁺ semblait dépendre de la position dans l'écoulement. Cette observation a été interprétée différemment par ces deux auteurs.

• Smith se fonda sur les travaux d'Adams pour associer la recombinaison en volume de la proche post-décharge à des ions $H_3^+(v \text{ excités})$ et celle de la lointaine post-décharge à des ions $H_3^+(v=0)$ pour lesquels la RD est supposée inefficace. Cette interprétation va à l'encontre du fait établi que le quenching d' $H_3^+(v \text{ faibles})$ par H_2 n'est pas très rapide ; le temps de vol des ions est trop court pour qu'ils puissent se relaxer vibrationnellement.

• Gougousi et Johnsen introduisirent la notion de coefficient de déionisation du plasma H_3^+ . Ce coefficient variable dans l'écoulement, dépendrait (fortement) de la densité électronique et de la densité en H_2 . Cette dépendance proviendrait de la stabilisation de la recombinaison : (VI. 17)

par un troisième corps:	$H_3^R(n = 7, l = 0ou1) + e \rightarrow H_3^R(n = 7, l > 1) + e$	(VI. 18)
	$H_{3}^{R}(n = 7) + e \rightarrow H_{3}^{R}(n < 7) + e$	(VI. 19)
	$H_3^R + H_2 \rightarrow H_3(nfaible) + H_2$	(VI. 20)

La durée de vie des états de Rydberg H_3^R serait drastiquement augmentée par le "l mixing" induit par les collisions (e ou H₂) et les microchamps électriques. L'observation de la courbure du graphe $\frac{1}{n_e}$ =fct(z) par Smith et Gougousi, ainsi que l'interprétation qu'ils en ont faite, est incompatible avec nos propres observations. Selon l'interprétation de Gougousi, la pente du graphe $\ln\left[\frac{\left[H_3^+\right]_{z=60mm}}{\left[H_3^+\right]_{z=0mm}}\right]$ en fonction de $\int_{z=0mm}^{z=60mm} n_e dz$ qui donne le coefficient de déionisation du plasma, devrait varier avec la densité électronique. Tel n'est pas le cas sur la figure 10 où aucune courbure n'est observée. Des problèmes liés à la turbulence de l'écoulement rendent impossible l'injection de trop gros débits d'hydrogène par les aiguilles ($Q > 500 \text{ cm}^3 \text{ min}^{-1}$ atm). Pour étudier l'effet de la densité d'hydrogène sur le coefficient de déionisation, nous avons travaillé avec différents débits d'hydrogène (20, 40, 150, 200, 250, 300 ou 400 cm³ min⁻ ¹ atm) pour une pression de chambre donnée. Cette procédure a été appliquée pour les pressions suivantes : 0,5, 0,6, 1,2, 1,8 et 1,9 Torr. Quelle que soit l'expérience, nous avons

toujours observé une absence de courbure de $\ln \left[\frac{[H_3^+]_z}{[H_3^+]_{z=0mm}} \right]$ en fonction de $\int_{z=0mm}^{z} n_e dz$, la pente

correspondante étant remarquablement reproductible d'une expérience à l'autre (Tableau 11). Toutes ces observations nous permettent de conclure que le coefficient de déionisation du plasma d' H_3^+ correspond réellement à la vitesse de recombinaison dissociative d' H_3^+ . Le fait que les vitesses de RD soient similaires malgré certaines conditions d'expériences très dissemblables (pression) nous amène aux remarques suivantes : soit les réactions de quenching d'H₃⁺(v) par H₂ sont relativement inefficaces pour des v faibles quels que soient les débits utilisés, soit les ions H_3^+ produits à partir d'ArH⁺ le sont très majoritairement dans des états vibrationnellenment relaxés.

$\frac{Pression(Torr)}{Q_{H2}(cm^{3}min^{-1}atm)}$	0,5 Torr	0,6 Torr	1,2 Torr	1,8 Torr	1,9 Torr
20 cm ³ min ⁻¹ atm		7,0 10^{-8} cm³s⁻¹ 1,65 10^{13} cm ⁻³ (b)	7,9 10⁻⁸ cm³s⁻¹ 3,3 10 ¹³ cm ⁻³ (b)	10 10⁻⁸ cm³s⁻¹ 4,9 10 ¹³ cm ⁻³ (b)	
40 cm ³ min ⁻¹ atm	8,0 10⁻⁸ cm³s⁻¹ 1,3 10 ¹³ cm ⁻³ (a)				
150 cm ³ min ⁻¹ atm			7,5 10^{-8} cm³s⁻¹ 2,5 10^{14} cm ⁻³ (b)	8,0 10^{-8} cm³s⁻¹ 4,3 10^{14} cm ⁻³ (b)	
250 cm ³ min ⁻¹ atm					8,0 10⁻⁸ cm³s⁻¹ 7,4 10 ¹⁴ cm ⁻³ (b)
300 cm ³ min ⁻¹ atm	7,3 10^{-8} cm³s⁻¹ 2,0 10^{14} cm ⁻³ (a)			8,2 10⁻⁸ cm³s⁻¹ 8,8 10 ¹⁴ cm ⁻³ (b)	
450 cm ³ min ⁻¹ atm				7,0 10^{-8} cm³s⁻¹ 1,3 10^{15} cm ⁻³ (b)	

Tableau 11 : Synthèse des différents résultats expérimentaux

Les données en caractères gras sont les vitesses mesurées de RD d'H₃⁺ tandis que celles en caractères normaux indiquent la densité en hydrogène suivant les deux types d'expériences (a) $(Q_{He} = 24 \ 1 \ min^{-1} \ atm) \ et$ (b) $(Q_{He} = 20 \ 1 \ min^{-1} \ atm)$.

La première remarque quant à l'efficacité du quenching a été étayée expérimentalement par Blakley⁽⁴⁴⁾; nous nous proposons de vérifier la seconde en utilisant un autre mode de production $d'H_3^+$ à partir de KrH⁺ qui nous garantit la présence exclusive $d'H_3^+$ (v=0).

Le lecteur perspicace aura remarqué que la vitesse de RD mesurée dans cette étude est moitié de celle mesurée par Canosa et al $(1992)^{(22)}$, toutes conditions expérimentales identiques. Nous justifions ce relatif désaccord par l'impossibilité des auteurs de cette précédente étude de travailler à des densités électroniques initiales moyennes voire faibles ($<10^{10}$ électrons cm⁻³); leur dynamique d'étude était inférieure à la nôtre.

VI. 2. 6 Production de l'ion H_3^+ (v=0) à partir de l'ion Kr H^+

VI. 2. 6. a Chimie de l'expérience

L'ion H_3^+ (v=0) est produit en trois étapes :

• Dans un premier temps, l'ion $H_3^+(v \le 2)$ est produit très en amont de l'écoulement, par injection d'un très faible débit d'hydrogène ($Q_{H2 \text{ initial}} = 1 \text{ cm}^3 \text{ min}^{-1} \text{ atm}$) suivant la méthode décrite dans le paragraphe précédent. A ce stade, seul l'ion $H_3^+(v \le 2)$ est présent dans l'écoulement.

• L'idée est ensuite de convertir le plasma d' H_3^+ (v ≤ 2) en un plasma de Kr H^+ (v=0) ; il s'agit de mettre à profit le transfert protonique de H_3^+ vers Kr (paragraphe VI. 1. 2. A)

$$\mathrm{H}_{3}^{+}(\mathrm{v}) + \mathrm{Kr} \to \mathrm{Kr}\mathrm{H}^{+} + \mathrm{H}_{2} \tag{VI. 21}$$

qui est légèrement exothermique et permet donc la réaction inverse avec une vitesse non négligeable. Le krypton est ainsi injecté par la même porte que l'hydrogène avec un débit comparable à ce dernier ($Q_{Kr} = 1 \text{ cm}^3 \text{ min}^{-1} \text{ atm}$). Nous utilisons une conséquence remarquable du transfert protonique : le refroidissement vibrationnel de KrH⁺. En effet, le transfert d'énergie vibrationnelle entre H_3^+ et KrH⁺ n'est pas résonant ; une dégradation de l'excitation vibrationnelle a lieu pour former finalement KrH⁺(v=0) (figure 12).

Figure 12 : Refroidissement vibrationnel de KrH⁺

• Enfin nous formons $H_3^+(v=0)$, en utilisant la réaction inverse du transfert protonique :

$$KrH^+(v=0) + H_2 \rightarrow H_3^+(v=0) + Kr$$
 (VI. 22)

Cette réaction est très légèrement endothermique et possède une vitesse non négligeable de $3,8 \ 10^{-11} \text{ cm}^3 \text{s}^{-1}$. Pour qu'elle ait lieu, il faut que le débit de la deuxième injection d'hydrogène Q_{H2 final} soit très grand devant celui du krypton. La valeur de ce débit d'hydrogène relève d'un compromis: il doit être à la fois suffisant pour que tous les ions KrH⁺ soient convertis et pas trop important pour éviter un trop gros apport d'impuretés ainsi que des problèmes liés à la turbulence de l'écoulement. Ce débit a été optimisé à 360 cm³ min⁻¹ atm.

	Réactions chimiques	Vitesses de réaction	τ(µs)	Références
	$He^{m} + Ar \rightarrow Ar^{+} + He + e$ $He^{+} + 2He \rightarrow He^{+}_{2} + He$ $He^{+}_{2} + Ar \rightarrow Ar^{+} + 2He$	$\frac{10^{-10} \text{ cm}^3 \text{ s}^{-1}}{8,3 \ 10^{-32} \text{ cm}^6 \text{ s}^{-1}}{2 \ 10^{-10} \text{ cm}^3 \text{ s}^{-1}}$	15 3240 7	(8) (9) (10)
Première étape	$Ar^{+} + H_{2} \rightarrow ArH^{+} + H$ $ArH^{+} + H_{2} \rightarrow H_{3}^{+}(v \le 5) + Ar$ $H_{3}^{+}(3 \le v \le 5) + Ar \rightarrow ArH^{+} + H_{2}$	$10^{-9} \text{ cm}^3 \text{ s}^{-1}$ $10^{-9} \text{ cm}^3 \text{ s}^{-1}$ $7 \ 10^{-10} \text{ cm}^3 \text{ s}^{-1}$	345 345 2	(10) (10) (11)
Deuxième étape	$\begin{aligned} H_3^+(v \le 2) + Kr &\rightarrow KrH^+(v = 0) + H_2 \\ KrH^+(v = 0) + H_2 &\rightarrow H_3^+(v \ge 0) + Kr \end{aligned}$	$\begin{array}{c} 1,1 \ 10^{-9} \ \mathrm{cm}^{3} \ \mathrm{s}^{-1} \\ << 3,8 \ 10^{-11} \ \mathrm{cm}^{3} \ \mathrm{s}^{-1} \end{array}$	315 >> 9075	(7) (7)
Troisième étape	$KrH^{+}(v = 0) + H_{2} \rightarrow H_{3}^{+}(v = 0) + Kr$ $H_{3}^{+}(v = 0) + Kr \rightarrow KrH^{+}(v \ge 0) + H_{2}$	$\frac{10^{-9} \text{ cm}^3 \text{ s}^{-1}}{<<1,1 \ 10^{-9} \text{ cm}^3 \text{ s}^{-1}}$	25 >> 315	(7) (7)
	$H_3^+(v=0) + e \rightarrow \text{produits}$	7,1 10^{-8} cm ³ s ⁻¹	2350	Ce travail

Tableau récapitulatif de la chimie impliquée dans la RD de $H_3^+(v=0)$

Conditions expérimentales

Thermodynamiques	Pression	P = 1,9 Torr
	Température	$T = 300^{\circ} K$
	Débits	$Q_{\rm He} = 20,21 \rm min^{-1} \rm atm$
		$Q_{Ar} = 250 \text{ cm}^3 \text{ min}^{-1} \text{ atm}$
		$Q_{H2initial} = 1 \text{ cm}^3 \text{ min}^{-1} \text{ atm}$
		$Q_{Kr} = 1 \text{ cm}^3 \text{ min}^{-1} \text{ atm}$
		$Q_{H2final} = 360 \text{ cm}^3 \text{ min}^{-1} \text{ atm}$
	Densités	$n_{\rm He} = 6,1 \ 10^{16} \ {\rm cm}^{-3}$
		$n_{Ar} = 7,3 \ 10^{14} \ cm^{-3}$
		$n_{\rm H2initial} = 2.9 \ 10^{12} {\rm cm}^{-3}$
		$n_{\rm Kr} = 2.9 \ 10^{12} \ {\rm cm}^{-3}$
		$n_{\rm H2 final} = 1,1 \ 10^{15} {\rm cm}^{-3}$
Hydrodynamiques	$v_{bulk} = 2500 c$	$m s^{-1}$

$$\tau_{\rm Hydro} = 4000 \ \mu s \ / \ 10 \ cm$$

VI. 2. 6. b Présentation et discussion des résultats

Le graphe
$$\ln \left[\frac{\left[H_{3}^{+}(v=0)\right]_{z=90mm}}{\left[H_{3}^{+}(v=0)\right]_{z=0mm}} \right]$$
 en fonction de $\int_{z=0mm}^{z=90mm} n_{e}dz$ est obtenu par la procédure

d'analyse dite à "z constant" ; il est représenté figure 13.

La pression de chambre étant quatre fois plus élevée que celle pour l'étude d'H₃⁺(v≤2), la gamme de densités électroniques étudiable est plus restreinte (densités plus faibles). La pente de la droite donne la vitesse de recombinaison dissociative de H₃⁺(v=0) :

$$\alpha_{(v=0)}(T_e=300^{\circ}K)=7,1 \ 10^{-8} \text{ cm}^3 \text{ s}^{-1}$$
 (VI. 23)

Compte tenu de l'incertitude de $^+_30\%$ attribuable à tous nos résultats, nous concluons que les vitesses de RD d'H₃⁺(v≤2) et H₃⁺(v=0) que nous avons mesurées, sont identiques. Les ions H₃⁺ (v≤2) produits à partir d'ArH⁺ sont manifestement très peu excités vibrationnellement.

VI. 2. 7 Synthèse et conclusion

Nous avons mesuré les vitesses de RD d' $H_3^+(v \le 2)$ et $H_3^+(v=0)$ produits à partir des ions précurseurs Ar H^+ et Kr H^+ . Les deux types d'expériences s'accordent sur une valeur de

 $(7\pm2)10^{-8}$ cm³ s⁻¹ à 300°K dans un buffer d'hélium. Précisons que nous avons également mesuré ces vitesses de RD dans un buffer d'argon à 8,0 et 6,6 10^{-8} cm³ s⁻¹ respectivement pour H₃⁺(v≤2) et H₃⁺(v=0). Ces résultats ne sont pas présentés dans le cadre de ce mémoire. La cohérence de l'ensemble de nos résultats est très satisfaisante. Ces derniers se situent dans la fourchette basse de la plupart des vitesses de RD d'H₃⁺ actuellement disponibles dans la littérature mais sont en accord avec l'idée d'une RD d'H₃⁺(v=0) relativement efficace bien que le processus direct soit inopérant à température ambiante. Le processus Multisteps pourrait fournir une stabilisation efficace au processus de recombinaison dissociative.

Figure 13 : Graphe de H_3^+ (v=0)

Bibliographie

(1) F.B. Yousif and J.B.A. Mitchell	Phys. Rev. A, <u>40</u> , 4318, (1989).		
(2) F.B. Yousif, J.B.A. Mitchell, M. Rogelstad, A	. Le Padellec, A. Canosa and M.I. Chibisov		
	Phys. Rev. A, <u>49</u> , 4610, (1994).		
(3) G. Sundström, S. Datz, J.R. Mowat, S. Manner	vik, L. Broström, M. Carlson, H. Danared		
and M. Larsson	Phys. Rev. A, <u>50</u> , 2806, (1994).		
(4) J.R. Mowat, H.Danared, G. Sundström, M. Car	rlson, L.H. Andersen, L. Vejby-Christensen,		
M. af Ugglas and M. Larsson	Phys. Rev. Lett., <u>74</u> , 50, (1995).		
(5) M. Geoghegan, N.G. Adams and D. Smith	J.Phys. B, <u>24</u> , 2589, (1991).		
(6) R. Walder and J.L. Franklin Int. J. Mass S	pectron. Ion. Phys., <u>36</u> , 85, (1980).		
(7) D.K Bohme, G.I. Mackay and H.I. Sciff	J.Chem. Phys., <u>73</u> , 4976, (1980).		
(8) T.P Parr, D.M. Parr and R.M. Martin	J.Chem. Phys., <u>76</u> , 316,(1982).		
(9) J.D.C. Jones, D.G. Lister, D.P. Wareing and N.	D. Twiddy J. Phys.B, <u>13</u> , 3247, (1980).		
(10) D.K. Bohme, N.G. Adams, M.Mosesman, D.H	B. Dunkin and E.E. Fergusson		
	J. Chem. Phys., <u>52</u> , 5094,(1970).		
(11) A.E.Roche, M.M. Sutton, D.K. Bohme and H	.I. Schiff		
	J. Chem. Phys., <u>55</u> , 5480, (1971).		
(12) E.P. Gray and D.E. Kerr	Annals of Physics, <u>17</u> , 276, (1959).		
(13) D.R. Lide « Handbook of Chemistry and Phy	sics » 74 th Edition, 10-205, (1993_94).		
(14) I.D. Petsalakis, G. Theodorakopoulos and S. C	Consta Molec. Phys., 75, 805, (1992).		
(15) E. Roueff, J. Le Bourlot and G. Pineau Des Fo	prêts		
« Dissociative recombination : Theo	bry, experiment and applications III » p.11		
(Editors D. Zajfman, J. B. A. Mitch	ell, D. Schwalm and B. R. Rowe)		
(Ein Gedi, Israel, 1995)			
(16) K.C. Kulander and M.F. Guest	J.Phys. B, <u>12</u> , 501, (1979).		
(17) H.H. Michels and R.H. Hobbs	Ap. J. <u>, 286</u> , 27, (1984).		
(18) T.F. O'Malley	J. Phys. B, <u>14</u> , 1229, (1981).		
(19) D.R. Bates	J.Phys. B, 25, 5479, (1992).		
(20) S. L. Guberman	Phys. Rev. A, 49, 4277, (1994).		
(21) J. B. A. Mitchell, M. Rogelstad and F. B. You	isif En cours de publication		
(22) A. Canosa, J.C. Gomet, B.R. Rowe, J.B.A. M	itchell and J.L. Quefellec		
	J.Chem. Phys., 97, 1028, (1992).		
(23) D. R. Bates, M.F. Guest and R.A. Kendall	Plan. Space Sci., 41, 9, (1993).		
(24) K.B. Persson and S.C.Brown	Phys. Rev., 100, 729, (1955).		
(25) M.T. Leu, M.A. Biondi and R. Johnsen	Phys. Rev. A, 8, 413, (1973).		
(26) D. Auerbach, R. Cacak, R. Caudano, T. D. Gaily, C. J. Keyser, J. Wm. McGowan,			
J.B.A. Mitchell and S.F. J. Wilk	J.Phys. B, 10, 3797, (1977).		
(27) J.A.McDonald, M.A. Biondi and R. Johnsen	Planet. Space Sci., 32, 651, (1984).		
(28) R. Johnsen Int. J. Mass. S	Spectrom. Ion Phys., 81 , 67 , (1987).		
(29) N.G.Adams, D.Smith and E. Alge	J. Chem. Phys. , 81, 1778, (1984).		
(30) N.G. Adams and D. Smith	IAU Symposium 120. Astrochemistry		
	Edited by M.S.Vardya and S.P.Tarafdar		
	(Reidel, Dordrech. 1987).		
(31) H.Hus, F.B. Yousif, A. Sen and J.B.A. Mitche	Phys. Rev. A, 38, 658, (1988).		
(32) T. Amano	J. Chem. Phys. , 92, 6492. (1990).		
	· · · · · · · · · · · · · · · · · · ·		

- (33) P.J.T. Van der Donk, F.B. Yousif and J.B.A. Mitchell Phys. Rev. A, <u>43</u>, 5971, (1991).
- (34) D.Smith and P.Spanel Int. J.Mass Spectrom. Ion Proc. ,<u>129</u>, 163, (1993).
- (35) T. Gougousi, R.Johnsen and M.F. Golde
 - Int. J. Mass Spectrom . Ion Proc., 149, 131, (1995).
- (36) G. Sundström, J.R. Mowat, H. Danared, S. Datz, L.Broström, A. Filevich, A. Källberg, S. Mannervik, K.G. Redsfelt, P. Sigray, M. AfUgglas and M.Larsson

Science, 263, 785, (1994).

- (37) E. P. Kanter, D. Schneider, Z. Vager, D. S. Gemmel, B.S. Zabransky, Gu Yuan-Zhuang, P.Arcuni, P.M. Koch, D.R. Mariani and W. Van de Water
- (38) D.L. Albritton

Phys. Rev. A, 29, 583, (1984).

(39) T. Oka

- At. Data Nucl. Tables, <u>22</u>, 1, (1978).
- Philos. Trans. R. Soc. London Ser. A, 303, 543, (1981).
- (40) T. Oka and M.F. Jagod J. Chem. Soc. Faraday Trans., 89, 2147, (1993). J. Chem. Phys. <u>, 96</u>, 6784, (1992).
- (41) G. C. Lie and D. Frye
- (42) B.M. Dinnelli, S. Miller and J.Tennyson J. Mol. Spectrosc., <u>153</u>, 718, (1992).
- (43) J.K.Kim, L.P. Theard and W. T. Huntress
 - Int. J. Mass Spectrom. Ion Phys., 15, 223, (1974).
- (44) C. R. Blakley, M. L. Vestal and J.H. Futrell J.Chem. Phys., 66, 2392, (1976).

$\begin{array}{c} \textbf{CHAPITRE VII} : \text{Recombinaison dissociative de CO}^{\text{+}}, \text{HCO}^{\text{+}}, \text{CN}^{\text{+}} \text{ et } \\ \text{HCN}^{\text{+}} \end{array}$

PAR LA METHODE DES FAISCEAUX CONFLUENTS

VII. 1 - RD de CO^+

- VII. 1. 1 Intérêt astrochimique de CO⁺
- VII. 1. 2 Synthèse des résultats expérimentaux antérieurs
- VII. 1. 3 Présentation de notre étude
 - VII. 1. 3. a Production de l'ion CO⁺
 - VII. 1. 3. b Caractérisation de l'état énergétique de CO⁺
 - VII. 1. 3. b. a Etat électronique
 - VII. 1. 3. b. b Etat vibrationnel
 - VII. 1. 3. c Présentation et discussion des résultats de la RD de
 - CO^+ ($X^2\Sigma^+$, v faibles)

VII. 2 - RD de HCO^+

- VII. 2. 1 Intérêt astrochimique de HCO⁺
- VII. 2. 2 Synthèse des résultats expérimentaux antérieurs
- VII. 2. 3 Théorie
 - VII. 2. 3. a Théorie de Kraemer et Hazi
 - VII. 2. 3. b Théorie de Talbi
- VII. 2. 4 Présentation de notre étude
 - VII. 2. 4. a Production de l'ion HCO⁺
 - VII. 2. 4. b Caractérisation de l'état énergétique de HCO⁺
 - VII. 2. 4. b. a Etat électronique
 - VII. 2. 4. b. b Etat vibrationnel
 - VII. 2. 4. c Présentation et discussion des résultats de la RD de HCO^+ ($X^1\Sigma^+$, v faibles)
- VII. 3 RD de CN^+
 - VII. 3. 1 Intérêt astrochimique de CN⁺
 - VII. 3. 2 Présentation de notre étude
 - VII. 3. 2. a Production de l'ion CN⁺
 - VII. 3. 2. b Caractérisation de l'état énergétique de CN⁺
 - VII. 3. 2. b. a Etat électronique
 - VII. 3. 2. b. b Etat vibrationnel
 - VII. 3. 2. c Présentation et discussion des résultats de la RD de CN^+ ($a^1\Sigma^+$ et $1^3\Pi$, v faibles)
- VII. 4 RD de HCN^+
 - VII. 4. 1 Intérêt astrochimique de HCN⁺
 - VII. 4. 2 Présentation de notre étude
 - VII. 4. 2. a Production de l'ion HCN⁺
 - VII. 4. 2. b Caractérisation de l'état énergétique de HCN⁺
 - VII. 4. 2. b. a Etat électronique
 - VII. 4. 2. b. b Etat vibrationnel
 - VII. 4. 2. c Présentation et discussion des résultats de la RD de HCN⁺ (v faibles)

$\underline{\text{VII. 1} - \text{RD de CO}^+}$

VII. 1. 1 Intérêt astrochimique de CO⁺

L'ion CO^+ a été détecté⁽¹⁻²⁾ en très faible quantité dans les nuages diffus. Il est produit par⁽³⁾ :

$$C^{+} + OH \rightarrow CO^{+} + H \qquad (VII. 1)$$

$$C_{2}^{+} + O \rightarrow CO^{+} + C \qquad (VII. 2)$$

$$CH^{+} + O \rightarrow CO^{+} + H \qquad (VII. 3)$$

$$C_2H^+ + O \to CO^+ + CH \tag{VII. 4}$$

Le transfert de charge sur l'hydrogène atomique est l'un de ses processus de destruction :

$$CO^+ + H \rightarrow CO + H^+$$
 (VII. 5)

L'hydrogénation en constitue un autre :

$$\mathrm{CO}^+ + \mathrm{H}_2 \to \mathrm{HCO}^+ + \mathrm{H}$$
 (VII. 6)

Sa recombinaison dissociative doit être également considérée :

$$CO^+ + e \rightarrow C + O$$
 (VII. 7)

L'ion CO⁺ est aussi présent dans les comètes⁽⁴⁾ où sa RD produit du carbone et de l'oxygène atomiques suivant trois canaux exothermiques :

$$CO^{+} + e \rightarrow C(^{3}P) + O(^{3}P)$$
 (VII. 8)

$$\rightarrow C(^{1}D) + O(^{3}P)$$
 (VII. 9)

$$\rightarrow C(^{3}P) + O(^{1}D)$$
 (VII. 10)

Certaines espèces atomiques, telle $C({}^{1}D)$, sont dans un état électronique excité. Leur désexcitation radiative est observée dans la queue des comètes⁽⁵⁾.

VII. 1. 2 Synthèse des résultats expérimentaux antérieurs

Etonnamment, la recombinaison dissociative de CO^+ a été très peu étudiée. Les seuls résultats disponibles sont synthétisés figure 1.

La première étude est due à Mentzoni et al $(1968)^{(6)}$ sur FALP (paragraphe III. 2. 1. b .b), qui mesurèrent des vitesses de RD de 6,7 10^{-7} cm³ s⁻¹ et 4 10^{-7} cm³ s⁻¹ pour des températures électroniques de 273 et 800 °K. A posteriori, cette étude a été critiquée par Whitaker et al $(1981)^{(7)}$ qui, dans des conditions similaires et en raison de la rapide formation de clusters CO^+ . $(CO)_n$, ont été dans l'impossibilité d'obtenir un plasma dominé par CO^+ . La rapidité des vitesses mesurées par Mentzoni pourrait s'expliquer par la présence de ces clusters, qui sont connus pour recombiner extrêmement rapidement avec les électrons.

L'étude de Mitchell et al (1985)⁽⁸⁾ a été effectuée à l'aide d'un « Merged Beams » (Chap IV), tout comme celle que nous présentons dans ce mémoire. Nous exposerons donc conjointement les deux études. Précisons toutefois que les sections efficaces mesurées par Mitchell sont attribuées à la RD de $CO^+(X^2\Sigma^+, 0 \le v \le 7)$ et qu'une loi de variation en température a pu être déduite :

$$\alpha(T_e) = 1.10^{-7} \left(\frac{300}{T_e}\right)^{0.46} \text{cm}^3 \text{s}^{-1}$$
 (VII. 11)

A 300°K, la vitesse de RD vaut 1 10^{-7} cm³/s ; elle est six fois plus faible que celle obtenue par Mentzoni.

Dans un article regroupant les vitesses de RD d'une dizaine d'ions mesurées à l'aide d'un FALP à la température électronique de 300° K, Geoghegan et al $(1991)^{(9)}$ proposent une valeur de 1,6 10^{-7} cm³ s⁻¹. L'état de l'ion recombinant n'est pas précisé.

Enfin de cette présente étude (1994), une loi de variation en température peut être déduite :

$$\alpha(T_e) = 3.1 \ 10^{-8} \left(\frac{300}{T_e}\right)^{0.67} \text{cm}^3 \text{s}^{-1}$$
 (VII. 12)

A 300°K, la vitesse de RD est trois fois plus faible que celle déduite du travail de Mitchell. Nous tenterons de justifier cette différence dans le paragraphe suivant.

Pour résumer cette revue de résultats expérimentaux, nous faisons remarquer qu'aucune des quatre études citées ne s'accorde sur la valeur de la vitesse de RD de CO⁺. En outre, nous déplorons l'absence de données théoriques sur le sujet.

Figure 1 : Synthèse des résultats de RD de CO⁺

VII. 1. 3 Présentation de notre étude

VII. 1. 3. a Production de l'ion CO⁺

Dans notre expérience, l'ion CO^+ a été formé au sein d'une source radiofréquence ne contenant que du dioxyde de carbone alors que dans l'expérience de Mitchell, le même ion a été obtenu à partir du monoxyde de carbone. Toute contamination de la source par l'azote a du être bannie, vu la similitude de masse entre N_2^+ et CO^+ .

VII. 1. 3. b Caractérisation de l'état énergétique de CO⁺

Il est dorénavant bien établi que la recombinaison dissociative est très sensible à l'état énergétique de l'ion recombinant. En conséquence, il a fallu nous assurer de celui de CO^+ . La source d'ions utilisée est une source radiofréquence montée sur le terminal d'un accélérateur Van De Graaff.

VII. 1. 3. b. a Etat électronique

Dans nos conditions expérimentales, l'ion CO^+ peut être peuplé suivant trois états électroniques : le fondamental $CO^+(X^2\Sigma^+)$ ainsi que les deux états excités $CO^+(A^2\Pi)$ et $CO^+(B^2\Sigma^+)^{(10)}$. L' état $(B^2\Sigma^+)$ est le plus haut en énergie et se désexcite radiativement en 45 ns⁽¹¹⁾, soit directement vers le fondamental, soit en cascade via l'état $(A^2\Pi)$. Ce dernier se désexcite beaucoup plus lentement en un temps qui varie entre 2,1 µs $(v=9)^{(12)}$ et 3,82 µs $(v=0)^{(13)}$. L'état énergétique des ions CO^+ au niveau de la région d'interaction est fonction de leur temps de résidence dans la source ainsi que de leur temps de transit entre la source et la région d'interaction.

Pour des ions d'énergie 350 keV, le transit est de 3 μ s. La pression et le potentiel d'extraction⁽¹⁴⁾ dans la source contrôlent le temps de résidence qui est donné par la relation de Blakley⁽¹⁵⁾ :

$$\tau = \frac{1}{D_a} \left(\frac{R}{2,4}\right)^2$$
(VII. 13)

Le coefficient D_a de diffusion ambipolaire est fonction inverse de la pression pour une température donnée. Le temps de résidence est donc proportionnel à la pression.

Dans l'approximation d'équilibre thermodynamique du plasma à 300°K, vu les similitudes des pressions dans la source ainsi que des mobilités réduites de CO^+ dans CO et CO_2 , les coefficients de diffusion ambipolaire sont sensiblement les mêmes pour les deux expériences « Merged Beams » ($D_a = 730 \text{ cm}^2 \text{ s}^{-1}$). Le temps de résidence est donc du même ordre de grandeur, soit pour une source de rayon 1,25 cm dans laquelle la pression est 0,1 Torr, une valeur moyenne de 350 µs. Les ions CO^+ étudiés sont donc dans l'état électronique fondamental ($X^2\Sigma^+$).

VII. 1. 3. b. b Etat vibrationnel

L'état vibrationnel de l'ion recombinant est beaucoup plus délicat à évaluer. La figure 2 représente la distribution des états de $CO^+(X^2\Sigma^+,v)$, calculée pour l'expérience de Mitchell (1985).

Les états de vibration sont peuplés jusqu'à v = 7 avec une majorité répartie entre v = 0 et v = 4. A cette date, l'effet du potentiel d'extraction de la source sur les distributions vibrationnelles n'était pas considéré. Des études postérieures à celle de CO⁺ ont montré que la diminution - voire l'annulation - de ce potentiel augmentait le temps de résidence des ions et favorisait donc leur relaxation vibrationnelle⁽¹⁴⁾. Nous avons adopté un protocole expérimental qui consiste à réduire l'extraction au minimum (minimum de courant ionique) puis à observer l'effet de la pression dans la source sur les sections efficaces $\sigma(P)$, pour une énergie E_{cm} donnée. La pression en sortie de colonne d'accélération est significative de la pression dans la source qui n'est pas directement mesurable. La figure 3 présente les

observations préliminaires faites pour l'étude de CO^+ à extraction nulle. Une section efficace extrémale est observée pour une pression de 6,5 10^{-6} Torr.

<u>VII 1. 3. c Présentation et discussion des résultats de la RD de CO⁺ ($X^2\Sigma^+$, v faibles)</u>

Les sections efficaces de recombinaison dissociative de CO^+ sont présentées figure 4 et ont été obtenues à la pression de l'extremum de $\sigma(P)$.

Figure 3 : Sections efficaces en fonction de la pression dans la source

Les sections efficaces présentées dans ce mémoire sont trois fois plus faibles que celles mesurées par Mitchell. Des distributions différentes des états vibrationnels de $CO^+(X^2\Sigma^+,v)$ peuvent justifier ce désaccord. Compte tenu du fait que les mesures de Mitchell ont été effectuées avec une certaine extraction (valeur non précisée), il semble très vraisemblable que

nos résultats soient à associer à des ions plus faiblement excités. Cette remarque étant faite, il faut s'assurer que la mesure des sections efficaces soit une mesure absolue. La discussion qui suit vaut pour tous les résultats présentés dans le chapitre.

La résolution en énergie ΔE_{cm} est le premier des trois facteurs susceptibles d'affecter une mesure absolue. Rappelons que la relation d'Auerbach⁽¹⁶⁾ (IV.14) qui donne les sections efficaces en fonction de l'énergie E_{cm} , n'est valable que pour $\Delta E_{cm} < E_{cm}$. Comme la mesure des sections efficaces se fait généralement à des énergies supérieures à 10^{-2} eV, il faut donc que la résolution ΔE_{cm} soit inférieure à cette valeur. Des structures résonantes extrêmement fines ont été observées sur certaines courbes de sections efficaces provenant de travaux récents sur la RD de H₂⁺ ou HeH^{+ (17-18)}. La capacité des « Merged Beams » à résoudre ces structures qui proviennent du mécanisme indirect de RD, renforce notre confiance dans la procédure de calcul des sections efficaces.

Un deuxième facteur doit être pris en compte qui a affecté d'anciennes mesures de RD d' H_3^+ : l'ionisation d'états de Rydberg à longue durée de vie au passage d'un déflecteur électrostatique utilisé pour séparer les ions des produits neutres de RD.

L'amplitude E du champ électrostatique (exprimée en V/cm) est suffisante pour ioniser certains états de Rydberg n*, de nombre de masse Z, tels $que^{(19)}$:

$$n \approx \left(\frac{6.810^8 Z^3}{E}\right)^{1/4}$$
 (VII. 14)

La RD d' H_3^+ , qui est due au mécanisme indirect, présente trois canaux de sortie des produits neutres : 3H, H_2 +H et H_3^{Ryd} . Certains états H_3^{Ryd} possèdent des nombres quantiques principaux supérieurs à 36 (E = 3,5 kV cm⁻¹) et sont donc ionisés par le déflecteur. Les sections efficaces de RD sont alors sous-estimées. Selon toute vraisemblance, si quelques états de Rydberg étaient impliqués dans la RD de CO⁺, HCO⁺, CN⁺ ou HCN⁺, ils ne seraient pas suffisamment excités pour être ionisés.

Un dernier facteur est lié au rendement quantique du détecteur de neutres. Nous nous sommes assurés que son rendement est de 100% pour des neutres d'énergie 350 keV.

<u>VII. 2 RD de HCO^+ </u>

VII. 2. 1 Intérêt astrochimique de HCO⁺

L'ion HCO⁺ est aisément détectable dans le milieu interstellaire par les techniques de radioastronomie. Son abondance peut fournir des indications sur le taux d'ionisation interstellaire ou le flux de rayonnement cosmique (paragraphe I. 1. 7. a). Dans les nuages denses, la molécule la plus abondante après H₂ est le monoxyde de carbone. L'ion HCO⁺ peut donc être formé par transfert de proton suivant ⁽²⁰⁾:

$$\mathrm{H}_{3}^{+} + \mathrm{CO} \to \mathrm{HCO}^{+} + \mathrm{H}_{2} \tag{VII. 15}$$

Cette réaction de destruction d' H_3^+ a une vitesse de 1,8 10⁻⁹ cm³ s⁻¹ pour des températures comprises entre 20 et 300°K ; la rapidité de ce processus reflète la disparité des affinités protoniques de CO (141 kcal mol⁻¹) et de H_2 (98 kcal mol⁻¹). Un autre processus destructeur d' H_3^+ est la RD ; son importance a été largement soulignée dans le chapitre précédent. Cependant, vue la faible ionisation fractionnaire des nuages denses (10⁻⁸), la RD d' H_3^+ (v = 0) ne peut pas inhiber la réaction de transfert protonique qui forme HCO⁺.

Une fois formé, la destruction de l'ion HCO^+ peut s'effectuer soit par transfert de proton vers des molécules dont l'affinité protonique est supérieure à celle de CO, soit par recombinaison dissociative. La faible densité du milieu interstellaire est telle qu'en dehors de CO, les molécules susceptibles d'attacher les protons sont très peu nombreuses. La RD est donc le principal mécanisme de destruction de l'ion HCO^+ , selon :

$$HCO^+ + e \rightarrow CO + H$$
 (VII. 16)

VII. 2. 2 Synthèse des résultats expérimentaux antérieurs

Un certain nombre de travaux expérimentaux ont été menés sur la recombinaison dissociative de HCO⁺, antérieurement à cette présente étude. Les résultats sont synthétisés sur la figure 5. Eu égard à l'extrême sensibilité de la RD vis à vis de l'état énergétique de l'ion recombinant, la comparaison des vitesses de RD obtenues ou extrapolées de différentes techniques, doit être effectuée avec grande prudence. Néanmoins, l'ensemble des résultats est en accord global.

Figure 5 : Synthèse des résultats de RD de HCO⁺

L'étude la plus ancienne est celle de Leu et al (1973)⁽²¹⁾, menée à l'aide d'une post- décharge stationnaire (paragraphe III. 2. 1. a. b). Leur mesure est corroborée par celle de Ganguli et al (1988)⁽²²⁾, obtenue par une technique similaire. Ces derniers ont pu déduire de leur vitesse de RD, une loi de variation en fonction de la température électronique, telle que :

$$\alpha(T_e) = 2,4 \ 10^{-7} \left(\frac{300}{T_e}\right)^{0.69} \text{ cm}^3 \text{ s}^{-1}$$
 (VII. 17)

A l'aide d'un FALP, Adams et al (1984)⁽²³⁾ ont également étudié la RD de HCO⁺ aux températures de 95 et 300°K. Les vitesses de RD correspondantes sont plus faibles que celles obtenues par les techniques de post-décharges stationnaires ; l'expérience d'Adams confirme toutefois une RD efficace pour l'ion HCO⁺. Deux explications peuvent être avancées pour justifier cette différence :

- les distributions des états vibrationnels de HCO⁺ ne sont pas identiques dans les deux types d'expériences.

- une proportion non négligeable d'ions He⁺ peut être restée présente dans l'expérience d'Adams et y avoir maintenu l'ionisation. Cet effet a déjà été évoqué pour d'autres études menées par le groupe de Birmingham, notamment pour celle sur H₃⁺.

En 1990, Amano⁽²⁴⁾ a également contribué à l'étude de HCO^+ dans un article regroupant des résultats sur H_3^+ , NH_2^+ et HCO^+ . La technique utilisée est différente des précédentes : elle est basée sur la décroissance temporelle de l'absorption IR de l'ion étudié (paragraphe III. 2. 1. a. c). La décroissance correspond à la destruction de l'ion. L'accord entre les données des post-décharges stationnaires et celles d'Amano est excellent.

Rowe et al $(1992)^{(25)}$ ont étudié la RD de HCO⁺ à température ambiante à l'aide d'un FALP similaire à celui utilisé par Adams. Une étude fine de l'énergie interne des ions a permis d'établir que 93% d'entre eux étaient dans l'état v = 0, le reste étant très faiblement excité. La vitesse de RD mesurée est néanmoins supérieure à celle d'Adams, et en accord avec les autres.

Les investigations ont été poursuivies dans le cadre de ce travail avec la technique dite des « Merged Beams ». Le consensus expérimental en sort encore renforcé. Un dilemme doit être alors résolu : comment réconcilier l'expérience et la théorie ? En effet, cette dernière exclut la possibilité que le processus direct (paragraphe II. 4. 1) puisse être efficace dans le cas de l'ion HCO⁺, du moins en ce qui concerne la théorie de Kraemer.

VII. 2. 3 Théorie

La recombinaison dissociative de $\mathrm{HCO}^{\scriptscriptstyle +}$ procède à priori, selon les trois canaux suivants :

$$\text{HCO}^+ + e \rightarrow \text{CO} + \text{H} + 7,45\text{eV}$$
 (VII. 18)

$$\rightarrow \text{OH} + \text{C} + 0,75\text{eV} \qquad (\text{VII. 19})$$

$$\rightarrow CH + O - 0.17 eV \qquad (VII. 20)$$

L'ion recombinant ainsi que les produits de RD sont dans leurs états énergétiques fondamentaux. Dans la suite de l'exposé, nous ne considérerons parmi ces canaux, que le plus exothermique ainsi que l'endothermique.

De plus, l'ion HCO^+ est traité comme un ion diatomique, ce qui revient à geler la distance CO à 2,1 bohrs, distance d'équilibre de CO dans l'état électronique fondamental $(X^1\Sigma^+)$. Deux études théoriques traitent de la RD de HCO^+ : celle de Kraemer et Hazi (1988)⁽²⁶⁾, celle de Talbi et al $(1992)^{(27)}$. Leurs conclusions quant à l'efficacité de la RD de $\text{HCO}^+(v=0)$, sont en désaccord. Ceci est du à une description différente des états électroniques impliqués dans la RD ; les positions relatives des courbes d'énergie potentielle auxquelles ces états correspondent, sont différentes.

En plus de la courbe d'énergie potentielle de l'ion dans son état électronique fondamental $HCO^+(X^1\Sigma^+)$, trois courbes d'états dissociatifs de HCO en symétrie linéaire sont à considérer : l'état fondamental $HCO(X^2\Sigma^+)$ et les premiers états excités $HCO(2^2\Sigma^+)$ et $HCO(2^2\Pi)$. Les limites asymptotiques de ces trois courbes sont respectivement $H(^2S) + CO(X^1\Sigma^+)$, $H(^2S) + CO(a'^3\Sigma^+)$ et $H(^2S) + CO(a^3\Pi)$.

VII. 2. 3. a Théorie de Kraemer et Hazi⁽²⁶⁾

Dans cette théorie, la description des états est adiabatique. La figure 6 illustre ce qui suit. Quelque soit la distance internucléaire d_{C-H} , la courbe de l'état dissociatif $(X^2\Sigma^+)$ se situe en dessous de celle de l'ion dans l'état $(X^1\Sigma^+)$; <u>le processus direct de RD ne peut donc pas avoir lieu entre ces deux états</u>. En revanche, les courbes correspondant aux états dissociatifs excités $(2^2\Sigma^+)$ et $(2^2\Pi)$ croisent celle de l'ion ; leurs intersections se situent néanmoins très loin du minimum d'énergie potentielle de HCO⁺ $(X^1\Sigma^+)$. L'ion HCO⁺(v=0) ne pourrait donc pas favorablement se recombiner à température ambiante avec les électrons par le processus direct. Les auteurs ont procédé à une optimisation des courbes d'énergie potentielle des états $(2^2\Sigma^+)$ et $(2^2\Pi)$ en utilisant les distances internucléaires d'équilibre des états excités de CO $(a'^3\Sigma^+)$ et CO $(a^3\Pi)$, soient respectivement 2,557 bohrs et 2,279 bohrs.

Figure 6 : Courbes d'énergie potentielle optimisées impliquées dans la RD de HCO⁺

VII. 2. 3. b Théorie de Talbi⁽²⁷⁾

La construction des états est diabatique. La courbe de l'état dissociatif $(X^2\Sigma^+)$ croise celle de l'ion $(X^1\Sigma^+)$ très près du minimum de cette dernière. Le processus direct serait donc très favorable à température ambiante (basse énergie). La description diabatique de l'état $(X^2\Sigma^+)$ est très contestée par Kraemer et Hazi.

VII. 2. 4 Présentation de notre étude

VII. 2. 4. a Production de l'ion HCO⁺

Les ions HCO^+ sont produits au sein de la source radiofréquence précédemment décrite. La composition du gaz injecté était de 90% de CO_2 et de 10% de H_2 .

VII. 2. 4. b Caractérisation de l'état énergétique de HCO⁺

VII. 2. 4. b. a Etat électronique

Dans cette étude de recombinaison dissociative, l'ion HCO^+ est dans l'état électronique fondamental $(X^1\Sigma^+)$.

VII. 2. 4. b .b Etat vibrationnel

Il a été montré expérimentalement, que l'état vibrationnel de l'ion dépend de sa durée de transit dans la source. Pour obtenir des ions dans des états vibrationnels faiblement excités, le potentiel d'extraction doit être minimisé voir annulé⁽¹⁴⁾. Il n'a pas été possible de travailler à extraction nulle car le Van De Graaff fournissait un courant d'ions HCO⁺ trop faible ; l'extraction a donc été fixée à 2 unités arbitraires. L'effet de la pression P a été étudié pour une énergie relative donnée ($E_{cm} = 0,01 \text{ eV}$). La figure 7 synthétise cette étude où il apparaît que la courbe $\sigma(P)$ présente un extremum.

Les sections efficaces de RD ont donc été mesurées à la pression de 7 10^{-6} Torr ; elles sont attribuées à des états faiblement excités.

v faibles)

La figure 8 représente les sections efficaces en fonction de l'énergie relative comprise entre 0,01 et 1 eV.

De prime abord, une remarque s'impose : deux types de sections efficaces apparaissent dans la gamme d'énergie étudiée.

• Entre 0,01 et 0,4 eV, les sections efficaces varient en $E_{cm}^{-1,7}$. Les vitesses de RD correspondantes sont :

$$\alpha(T_{e}) = 1.7 \quad 10^{-7} \left(\frac{300}{T_{e}}\right)^{.20} \text{ cm}^{3} \text{s}^{-1}$$
(VII. 21)
avec $100 \le T_{e} \le 3500^{\circ} \text{K}$

Figure 7 : Sections efficaces en fonction de la pression dans la source

Figure 8 : Sections efficaces de RD de HCO⁺

Pour une température de 300° K, nous obtenons $\alpha_{RD} = 1,7 \ 10^{-7} \text{ cm}^3 \text{ s}^{-1}$, ce qui est en parfait accord avec les autres données de la littérature. Comment justifier alors la recombinaison de HCO⁺(v faibles), alors que d'après Kraemer et Hazi⁽²⁶⁾', il n'y a pas de croisement favorable des courbes d'énergie potentielle ? Les travaux de Talbi et al ⁽²⁷⁾ semblent davantage correspondre à nos observations. Notons toutefois, que bien que la vitesse de RD mesurée pour HCO⁺ ne soit pas négligeable, elle ne constitue pas une vitesse rapide de recombinaison directe pour un ion triatomique. Concluons que le processus « Multisteps » a été invoqué par Bates (1993) ⁽²⁸⁾ comme alternative à la supposée inefficacité du processus direct. L'électron serait initialement capturé par l'ion HCO⁺(X¹\Sigma⁺) dans un état de Rydberg. Puis une succession de transitions horizontales entre états de Rydberg intermédiaires permettraient d'atteindre l'état dissociatif HCO(X²\Sigma⁺).

• Entre 0,4 et 1 eV, les sections efficaces ne suivent plus la même loi de variation, et certaines d'entres elles ne sont pas négligeables.

Nous proposons deux explications différentes à cette observation que nous attribuons à l'ouverture d'un nouveau canal de RD.

• Le travail de Kraemer et Hazi sert de support à la première explication. En effet, l'énergie relative E_{cm} du système (HCO⁺+ e) serait suffisante pour atteindre la courbe d'énergie potentielle optimisée de l'état dissociatif HCO($2^2 \Sigma^+$) à partir de la courbe de HCO⁺($X^1\Sigma^+$, v faibles). Nous proposons donc l'ouverture de ce nouveau canal de recombinaison dissociative pour des énergies E_{cm} supérieures à 0,4 eV ; la RD procèderait alors par le mécanisme direct. Cette explication requiert cependant un certain degré d'excitation vibrationnelle des ions HCO⁺.

• Comme alternative, nous proposons à la lumière des travaux de MacGregor et al⁽²⁹⁾ (figure 9), l'ouverture du canal endothermique $CH(^2\Pi) + O(^3P)$ car les énergies E_{cm} , supérieures à 0,17 eV, sont suffisantes pour franchir la barrière de potentiel de ce canal. Les états dissociatifs $HCO(^2\Delta)$ et $HCO(^2\Sigma^+)$ qui correspondent à cette limite asymptotique, croisent la courbe de potentiel de l'ion près de son minimum.

Figure 9 : Courbes de potentiel pour le canal de RD suivant CH+O

<u>VII. 3 - RD de CN^+ </u>

VII. 3. 1 Intérêt astrochimique de CN⁺

A l'heure actuelle et bien qu'il soit intégré dans certains modèles de nuages diffus⁽³⁾, l'ion CN^+ n'a pas été détecté dans le milieu interstellaire. Néanmoins, son mode de production supposé est :

$$CH^+ + N \rightarrow CN^+ + H$$
 (VII. 22)

L'efficacité de cette réaction est conditionnée par celles des autres modes de destruction de CH⁺, et en particulier par la RD.

Deux modes de destruction de CN⁺ sont envisageables :

- l'hydrogénation selon $CN^+ + H_2 \rightarrow HCN^+ + H$ (VII. 23)

- la recombinaison dissociative selon $CN^+ + e \rightarrow C + N$ (VII. 24)

Très peu d'études ont été effectuées sur l'ion CN^+ , tant d'un point de vue théorique que d'un point de vue expérimental ; cette lacune demeure en filigrane de toute la présentation qui suit, et est d'autant plus inexplicable que la présence de sa molécule parente CN est fermement établie dans le milieu interstellaire⁽³⁰⁾.

VII. 3. 2 Présentation de notre étude

Soulignons que ce travail constitue la première approche de la RD de CN⁺.

VII. 3. 2. a Production de l'ion CN⁺

L'ion a été créé au sein de la source précédemment utilisée et dans laquelle a été injecté un mélange de N₂ et de C₂H₄. En sortie de l'accélérateur Van De Graaff, un électroaimant permet de sélectionner les ions en fonction de leur masse. La nature du mélange injecté est telle que deux ions correspondent à la masse de l'ion étudié (26 amu) : CN⁺ et C₂H₂⁺. L'ion indésirable C₂H₂⁺ ne peut provenir que de son gaz parent C₂H₄. L'optimisation du courant d'ions CN⁺ par rapport à celui de C₂H₂⁺ a été obtenue par réduction de la proportion C₂H₄ /N₂ au minimum nécessaire à la détection d'un courant d'ion de la masse souhaitée. Dans cette expérience, un courant typique d'ions CN⁺ a été de quelques dizaines de picoampères. La composition de la source a été optimisée à 90% de N₂ et 10% de C₂H₄.

VII. 3. 2. b Caractérisation de l'état énergétique de CN⁺

VII. 3. 2. b. a Etat électronique

La figure 10, tirée d'un article de Hirst $(1994)^{(31)}$, illustre la difficulté de l'analyse quant à l'état électronique des ions CN^+ produits dans la source. Une multitude d'états électroniques de spins différents sont à priori peuplables dans nos conditions expérimentales. De plus, les positions relatives des courbes d'énergie potentielle de CN^+ ne sont pas fermement établies. En outre, aucune donnée n'est disponible sur les temps de vie radiatifs des états électroniques excités. Des principes généraux, vérifiés sur de nombreux systèmes hétéronucléaires permettent de simplifier l'analyse :

- les états électroniques excités ont des temps de vie compris entre la nanoseconde et la microseconde.

- les transitions radiatives entre états de spins différents sont interdites.

Le temps de résidence des ions CN^+ dans la source peut être évalué à 300 µs ; les seuls états électroniques qui puissent survivre dans la région d'interaction sont $CN^+(a^1\Sigma^+)$ et $CN^+(1^3\Pi)$.

VII. 3. 2. b. b Etat vibrationnel

La procédure décrite précédemment pour obtenir des ions vibrationnellement peu excités, a été appliquée au cas de CN^+ . Le potentiel d'extraction a été fixé à 0 unités arbitraires ; une étude systématique, représentée figure 11, a consisté à étudier l'effet de la pression sur les sections efficaces.

Figure 10 : Diagramme énergétique de CN⁺

Figure 11 : Sections efficace en fonction de la pression dans la source Les résultats qui sont présentés dans le paragraphe suivant, ont été obtenus pour une pression en sortie de colonne d'accélération de 7 10^{-6} Torr.

<u>VII. 3. 2. c</u> Présentation et discussion des résultats de la RD de $CN^+(a^1\Sigma^+ et 1^3\Pi, v faible)$

La figure 12 présente les sections efficaces qui ont été mesurées.

Pour une énergie relative comprise entre 0,01 et 0,1eV et exception faite d'une structure résonante à 0,06 eV, les sections efficaces sont données par :

$$\sigma(E_{cm})=3,2 \ 10^{-14} \left(\frac{0,01}{E_{cm}}\right)^{1,27} cm^2$$
 (VII. 25)

Une loi de variation en température peut être déduite :

$$\alpha(T_e) = 1,5 \ 10^{-7} \left(\frac{300}{T_e}\right)^{0.77} \text{cm}^3 \text{s}^{-1}$$
 (VII. 26)

Deux remarques peuvent être faites :

• la vitesse de RD obtenue à $T_e = 300^{\circ}K$ est typique d'un ion diatomique ; la recombinaison dissociative est donc efficace.

• la preuve de l'absence de $C_2H_2^+$ dans le faisceau d'ions est indirectement apportée par l'absence de sections efficaces significatives pour des énergies $E_{cm} > 0,1$ eV (figure 12). En effet, la RD de $C_2H_2^+$ a été étudiée par Mul et al (1980)⁽³²⁾ à l'aide de « Merged Beams ». Pour $E_{cm} > 0,1$ eV, une loi de variation est proposée par les auteurs :

$$\sigma(E_{cm})=3,0 \ 10^{-15} \left(\frac{0,2}{E_{cm}}\right)^{1,20} cm^2$$
 (VII. 27)

Si le faisceau avait été contaminé par $C_2H_2^+$, les sections efficaces mesurées par Mul auraient été observables sur la figure 12 ; tel n'est pas le cas.

Figure 12 : Sections efficaces de RD de CN^+

Nous proposons une explication à ce comportement inhabituel des sections efficaces de RD. Pour cela, nous ramenons le lecteur à la figure 10, où nous nous intéresserons plus particulièrement aux états électroniques $CN^+(a^1\Sigma^+)$ et $CN^+(1^3\Pi)$. Une controverse existe entre spécialistes, en ce qui concerne la position relative des courbes d'énergie potentielle associées à ces deux états. Les premiers calculs pour Shimakura⁽³³⁾ donnaient $(a^1\Sigma^+)$ pour l'état électronique fondamental et $(1^3\Pi)$ pour le premier état électronique excité, à 0,63 eV au dessus du précédent. Les travaux de Wu⁽³⁴⁾ conclurent à une attribution exactement inverse des états électroniques et donnèrent entre ces états un écart de (0,3 +/- 0,2) eV. Hirst⁽³⁵⁾ montra que les deux états étaient très proches mais ne put lever l'ambiguïté sur l'identité de l'état électronique fondamental. Murrel⁽³⁶⁾ trouva les états $(a^1\Sigma^+)$ et $(1^3\Pi)$ dégénérés. Hirst⁽³¹⁾, dans un récent travail, semble en mesure de pouvoir clore la controverse et la discussion de nos résultats est fondée sur cette dernière étude. Il attribue l'état électronique fondamental à $CN^+(a^1\Sigma^+)$ et l'état électronique excité à $CN^+(1^3\Pi)$, ce dernier étant distant de 0,08 eV du précédent. Nous proposons que pour $E_{cm}<0,1eV,$ les électrons ne subissent que la recombinaison dissociative selon :

$$CN^+(a^1\Sigma^+ et \ 1^3\Pi, v \ faibles) + e \rightarrow C + N$$
 (VII. 28)

Pour justifier le phénomène observé à plus haute énergie ($E_{cm} > 0,1 \text{ eV}$), nous suggérons qu'une fraction (importante) des électrons soit impliquée dans un processus d'excitation de l'ion CN^+ initialement dans l'état électronique fondamental, selon :

$$CN^+(a^1\Sigma^+, v \text{ faibles}) + e \rightarrow CN^+(1^3\Pi, v \text{ faibles}) + e$$
 (VII. 29)

La fraction restante des électrons subirait la recombinaison dissociative mentionnée plus haut.

$\underline{\text{VII. 4} - \text{RD de HCN}^+}$

VII. 4. 1 Interêt astrochimique de HCN⁺

L'ion HCN^+ ne fait pas partie de la centaine d'espèces moléculaires recensées dans les nuages interstellaires. En revanche, la présence confirmée des molécules CN et HCN incite à penser que l'ion HCN^+ est un des maillons de la chimie des cyanures, tout comme l'est CN^+ . Certains modèles de nuages diffus⁽³⁾ en tiennent compte dans leur chimie et retiennent principalement deux modes de production ainsi que deux modes de destruction. Les deux modes de production sont :

$$CN^+ + H_2 \rightarrow HCN^+ + H$$
 (VII. 30)

$$CH_2^+ + N \rightarrow HCN^+ + H$$
 (VII. 31)

L'ion HCN^+ est insaturé en atome d'hydrogène ; il est détruit par la réaction :

$$\mathrm{HCN}^{+} + \mathrm{H}_{2} \rightarrow \mathrm{H}_{2}\mathrm{CN}^{+} + \mathrm{H}$$
 (VII. 32)

L'ion H_2CN^+ a été détecté dans les nuages diffus ; sa RD conduit à la production de HCN, molécule également détectée.

L'autre mode de destruction de l'ion HCN^+ est la recombinaison dissociative :

$$HCN^+ + e \rightarrow CN + H$$
 (VII. 33)

Cette dernière réaction pourrait être la principale source de CN, dont la présence est également confirmée dans les nuages diffus. Dans le cadre de ce travail, la RD de HCN^+ a été étudiée ; les résultats sont présentés et discutés dans le prochain paragraphe.

VII. 4. 2 Présentation de notre étude

Tout comme pour CN^+ , ce travail constitue la première approche expérimentale de RD de HCN^+ .

VII. 4. 2. a Production de l'ion HCN⁺

La composition du gaz contenu dans la source RF est identique à celle utilisée pour l'étude de CN^+ ; elle a permis de minimiser la présence de $C_2H_3^+$ dont la masse est identique à celle de HCN^+ .

VII. 4. 2. b Caractérisation de l'état énergétique de HCN⁺

VII. 4. 2. b. a Etat électronique

Dans une étude préalable à celle de la recombinaison dissociative, nous avons tenté de caractériser et de quantifier les états énergétiques de HCN^+ peuplés dans la source. Malheureusement les courbes d'énergie potentielle de HCN^+ ne font pas partie des quelques données disponibles sur HCN^+ dans la littérature. Toutefois, en nous basant sur des considérations identiques à celles déjà proposées au cours du chapitre, nous attribuons nos mesures à des ions HCN^+ électroniquement peu excités.

VII. 4. 2. b. b Etat vibrationnel

Avec un potentiel d'extraction fixé à 0 unités arbitraires, nous avons reproduit la procédure appliquée aux autres ions. Pour une énergie relative donnée, nous avons étudié l'effet de la pression sur les sections efficaces de RD. Cette étude est rapportée figure 13 ; à nouveau la courbe $\sigma(P)$ présente un extremum.

Les mesures de sections efficaces de RD ont été effectuées à la pression de l'extremum.

 $\frac{\text{VII. 4. 2. c} \text{ Présentation et discussion des résultats de la RD de HCN}{\text{faibles }}$

La figure 14 présente les sections efficaces qui sont données par la relation :

$$\sigma(E_{cm}) = 1,0 \quad 10^{-13} \left(\frac{0,01}{E_{cm}}\right)^{1.59} cm^2$$
(VII. 34)
0.01 < E_{cm} < 0.5eV

Une loi de variation en température peut être déduite :

$$\alpha(T_e) = 5,2 \ 10^{-7} \left(\frac{300}{T_e}\right)^{1,09} \text{cm}^3 \text{s}^{-1}$$
 (VII. 35)

Les résultats abondent dans le sens d'une RD de HCN⁺ efficace. Bien que cette efficacité soit typique d'un ion triatomique, il serait intéressant que la théorie définisse quel mécanisme est responsable de la RD. Deux faits sont à noter :

- la dépendance en $E_{cm}^{-1,0}$ des sections efficaces données par le mécanisme direct est éloignée de celle en $E_{cm}^{-1,59}$ observée dans cette étude. Cette constatation a déjà été faite pour la RD de HCO⁺.

- aucune structure résonante caractéristique du mécanisme indirect n'est observée.

Figure 13 : Sections efficaces en fonction de la pression dans la source

Figure 14 : Sections efficaces de RD de HCN^+

(1) D. R Flower Int. Rev. Phys. Chem., 14, 421, (1995). An. Rev. Phys. Chem., 46, 27, (1995). (2) E. Herbst Chemical Rev., 92, 1473, (1992). (3) D. Smith Appl. J., 238, 753, (1980). (4) W. F. Heubner and P. T. Giguere (5) P. D. Feldman Astron. Astrophys., 70, 547, (1978). (6) M. H. Mentzoni and J. Donohue Phys. Lett., 26A, 330, (1968). Phys. Rev. A, 23, 1481, (1981). (7) M. Whitaker, M.A. Biondi and R. Johnsen J. Phys. B, <u>18</u>, 547, (1985). (8) J.B.A. Mitchell and H. Hus (9) M. Geoghegan, N.G. Adams and D. Smith J. Phys.B, 24, 2589, (1991). (10) N. Honjou and F. Sasaki Mol. Phys., 37, 1593, (1979). (11) J. Desesquelles, M. Dufay and D.C. Poulizac Phys. Lett., 27, 96, (1968). (12) R.F. Holland and W.B. Maier J.Chem. Phys., 56, 5229, (1972). (13) G. R. Mohlmann and F. J. De Heer 43, 170, (1976). (14) F. B. Yousif, P.J.T. Van Der Donk, M. Orakzai and J.B.A. Mitchell Phys Rev. A, 44, 5653, (1991). (15) C. R. Blakley, M.L. Vestal and J.H. Futrell J. Chem. Phys., <u>66</u>, 2392, (1977). (16) D. Auerbach, R. Cacak, R. Caudano, T. D. Keyser, J.W. Mc Gouvan, J.B.A. Mitchell and J. Phys.B, 10, 3797, (1977). S.F.J. Wilk (17) P. Van der Donk, F.B. Yousif, J.B.A. Mitchell and A.P. Hickman Phys. Rev. Lett., 67, 42, (1991). (18) F. B. Yousif, J.B.A. Mitchell, M. Rogelstad, A. Le Padellec, A. Canosa and M.I. Chibisov Phys. Rev. A, 49, 4610, (1994). (19) E. P. Kanter, D. Scheider, Z. Vager, D.S. Gemmel, B.S. Zabransky, Gu Yuan-Zhuang, P. Arcuni, P.M. Koch, D.R. Mariani and W. Van de Water Phys. Rev. A, 29, 583, (1984). Chem. Phys. Lett., 32, 610, (1975). (20) J.K. Kim, L.P. Theard and W. T. Huntress (21) M.T. Leu, M.A. Biondi and R. Johnsen Phys. Rev. A, 8, 420, (1973). (22) B. Ganguli, M.A. Biondi, R. Johnsen and J.L.DulanevPhys. Rev., 37, 2543, (1988). (23) N.G.Adams, D. Smith and E. Alge J. Chem. Phys., 81, 1778, (1984). J. Chem. Phys., <u>92</u>, 6492, (1990). (24) T. Amano (25) B.R. Rowe, J.C. Gomet, A. Canosa, C. Rebrion and J.B.A. Mitchell J. Chem. Phys., 96, 1105, (1992). (26) W. P. Kraemer and A.V. Hazi « Dissociative Recombinaison : Theory, Experiment and Applications « Editors J.B.A. Mitchell and S.L. Guberman p.61 (World Scientific, Singapore, 1989). (27) D. Talbi, A.P. Hickman, F. Pauzat, Y. Ellinger and G. Berthier Astrophys. J., 339, 231, (1989). (28) D.R. Bates J.Phys.B, <u>25</u>, 5479, (1992). (29) M. McGregor and R. S. Berry J.Phys. B, <u>6</u>, 181, (1973). (30) W.S. Adams and F.H. Seares Ann. Rep. MountWilson Observatory, 23, (1938-39). (31) D.M. Hirst Mol. Phys., 82, 359,(1994). (32) P.M. Mul and J.Wm Mc Gowan Ap. J., <u>237</u>, 749,(1980). (33) N. Shimakura, H. Inouye, N. Honjou, M. Sagara and K. Ohno Chem. Phys. Lett., 55, 221, (1978). Chem. Phys. Lett., 59, 457, (1978). (34) A.A. Wu

(35) D. M Hirst Chem. Phys. Lett., <u>65</u>, 181, (1979).
(36) J.N. Murrell. A. Al-Derzi, J.Tennyson and M.F. Guest Mol. Phys., <u>38</u>, 1755, (1979).

$Chapitre \ VIII: {\rm conclusion \ et \ perspectives}$

VIII. 1 Conclusion

- VIII. 2 Perspectives de recherche : étude de la RD de N_2^+
 - VIII. 2. 1 Intérêt atmosphérique de N_2^+
 - VIII. 2. 2 Aspect théorique
 - VIII. 2. 3 Revue des principaux résultats expérimentaux
 - VIII. 2.4 Expérience en fluorescence induite par laser (LIF)
 - VIII. 2. 4. a Dispositif expérimental
 - VIII. 2. 4. b Principe de l'expérience
 - VIII. 2. 4. c Mesure des vitesses de RD de $N_2^+(v)$
 - VIII. 2. 4. d Mesure de la température vibrationnelle par LIF

VIII. 1 Conclusion

Ce travail avait pour ambition l'étude de la recombinaison dissociative par deux techniques distinctes mais néanmoins complémentaires : le Merged Beams implanté à l'Université Western Ontario (Canada) et le FALP-MS implanté à l'Université de Rennes I (France).

Ainsi, un certain nombre de résultats inédits ont été obtenus notamment sur HCO^+ , CN^+ et HCN^+ .

L'étude "Merged Beams" de l'ion CO⁺(v faible) a montré une faible efficacité de sa RD. Ceci est en désaccord avec les trois autres études sur le sujet, étude elle-même en désaccord. La RD de CO⁺ reste un processus à étudier dans le futur, tant expérimentalement que théoriquement.

Le "Merged Beams" offre la possibilité de travailler à des énergies relatives élevées (jusqu'à quelques eV). Il a été possible de mettre en évidence l'ouverture de canaux de recombinaison dissociative directe de HCO⁺(v faible), pour des énergies supérieures à 0,4 eV. Rappelons que pour des ions HCO⁺ vibrationnellement peu excités, la RD ne peut pas procéder efficacement en raison d'une absence de croisement favorable des courbes d'énergie potentielle. Le processus "Multisteps" est proposé comme alternative à l'observation expérimentale d'une certaine efficacité de la RD.

L'étude de la RD de l'ion $CN^+(v \text{ faible})$ est inédite ; son efficacité mesurée est typique d'un ion diatomique. Pour des énergies relatives supérieures à 0,1 eV, la recombinaison dissociative entre en compétition avec un processus d'excitation électronique de CN^+ .

L'étude de la RD de $HCN^+(v \text{ faible})$ a montré que cette dernière présente une efficacité typique d'un ion triatomique. Un des produits de recombinaison est la molécule CN, dont la présence a été établie dans le milieu interstellaire. Pour affiner nos connaissances sur la chimie des cyanures, il serait souhaitable que la RD des ions HCN^+ et H_2CN^+ soit davantage étudiée.

La partie française de ce travail a donné l'occasion d'étudier certains ions hydrogénés tels KrH^+ , XeH^+ et H_3^+ .

Les deux premiers systèmes appartiennent à la famille des hydrures de gaz rares, dont quasiment un seul membre HeH⁺ avait été étudié expérimentalement. Il semblerait que leur intérêt soit plus théorique qu'astrochimique ; en effet, l'efficacité de la RD semble conditionnée par la présence (ou l'absence) d'états dissociatifs à limite asymptotique ionique. Ainsi l'ion KrH⁺ qui n'en possède pas, recombine si faiblement que la technique FALP ne peut donner qu'une limite supérieure de la vitesse de RD. En revanche, l'ion XeH⁺ qui en est doté, recombine efficacement.

La recombinaison dissociative de H_3^+ revêt un intérêt fondamental tant d'un point de vue astrochimique que théorique ; son efficacité conditionne la complexité de la chimie dans les nuages interstellaires denses. Nous avons utilisé une technique physico-chimique de refroidissement vibrationnel de l'ion H_3^+ pour le produire sur le niveau fondamental. En effet, l'essentiel du débat réside dans l'efficacité (ou la non efficacité) de la RD d' H_3^+ (v = 0), dont sont abondamment fournis les nuages denses. Les résultats obtenus sont plus faibles que ceux de la dernière étude FALP par Canosa et al (1992), mais restent conformes au fait que le mécanisme direct est inopérant dans le cas d' H_3^+ (v = 0). Aussi efficaces que puissent être les mécanismes "Full Direct" ou "Multisteps", ils ne le sont pas autant que la RD directe.

VIII. 2 Perspectives de recherche : étude de la RD de N_2^+

Le laboratoire de Rennes a prévu d'étudier la RD de $N_2^+(v)$ par fluorescence induite par laser. Nous rappellerons d'abord l'intérêt que revêt N_2^+ pour les ionosphères planétaires. Nous nous placerons ensuite d'un point de vue théorique pour guider la discussion sur les différents résultats expérimentaux engrangés sur le sujet. Enfin nous présenterons l'expérience prévue à Rennes dans les prochains mois.

VIII. 2. 1 Intérêt atmosphérique de N_2^+

Comme cela à déjà été évoqué dans le chapitre d'introduction générale (paragraphe I. 1.7. b. b), la recombinaison dissociative de N_2^+ est impliquée dans l'évasion de l'azote atomique de l'atmosphère Martienne⁽¹⁻²⁾. En effet, ce processus est suffisamment exothermique pour fournir à certains atomes d'azote au dessus de l'exobase, une vitesse supérieure à la vitesse de libération. La vitesse de RD en fonction du quantum de vibration v ainsi que les rapports de branchement des différents canaux de sortie sont des données vitales.

VIII. 2. 2 Aspect théorique

Les courbes d'énergie potentielle présentées figure 1 sont tirées d'un article de Guberman⁽³⁾ sur la RD de N₂⁺(v=0) et N₂⁺(v=1). Nous nous intéresserons plus particulièrement à la RD de N₂⁺($X^{2}\Sigma_{g}^{+}, v = 0$) dont l'état dissociatif est (C'³ Π_{u}). Il s'agit d'un état diabatique composé de deux portions d'états adiabatiques, (2³ Π_{u}) pour les faibles distances inter-nucléaires et (C³ Π_{u}) pour les plus fortes distances internucléaires ; la limite asymptotique est N(⁴S) +N(²D). Le croisement des courbes d'énergie potentielle de l'ion (v = 0) et de l'état dissociatif est très favorable pour la RD. La vitesse calculée est :

$$\alpha(T_e)_{\nu=0}=1,6 \ 10^{-7} \left(\frac{300}{T_e}\right)^{0.37} \text{cm}^3 \text{s}^{-1}$$
 (VIII. 1)

$100 \le T_e \le 1000^{\circ} K$

La figure 2 présente la contribution des mécanismes direct et indirect aux sections efficaces de RD de $N_2^+(v=0)$ suivant l'état dissociatif $(C'^3\Pi_u)$. Le trait pointillé représente plus particulièrement la contribution du seul processus direct tandis que le trait plein représente la section efficace totale. La RD de $N_2^+(X^2\Sigma_g^+, v=1)$ implique des états supplémentaires à celui $(C'^3\Pi_u)$ uniquement considéré pour le niveau v = 0. Il faudrait en particulier tenir compte de l'état $(4^3\Pi_u)$. La seule contribution de l'état $(C'^3\Pi_u)$ donne :

$$\alpha(T_e)_{v=1}=2,0 \ 10^{-9} \left(\frac{300}{T_e}\right)^{0.076} \text{cm}^3 \text{s}^{-1}$$
 (VIII. 2)

$200 \leq T_e \leq 400^\circ K$

La prise en compte d'états supplémentaires ne peut qu'améliorer l'efficacité de la RD de N_2^+ (v=1).

VIII. 2. 3 Revue des principaux résultats expérimentaux

Un effort important a été consenti pour l'étude expérimentale de la RD de l'ion N_2^+ . Parmi l'ensemble des travaux, citons ceux de Cunningham et al $(1972)^{(4)}$ à l'aide d'un tube à choc, de Zipf $(1980)^{(5)}$ avec une post-décharge micro-onde couplée à un LIF, de Mehr et al $(1969)^{(6)}$ à l'aide d'une post-décharge stationnaire et de Canosa et al $(1991)^{(7)}$ avec un FALP. Certaines de ces expériences ont permis de mesurer sélectivement la vitesse de RD de N_2^+ en fonction du niveau vibrationnel v $^{(5)-(7)}$; toutes s'accordent sur une valeur de la vitesse de 2 10^{-7} cm³ s⁻¹ à 300°K et sont en conformité avec les données théoriques présentées ci-dessus. Pour nuancer cette belle unanimité, précisons que Johnsen ⁽⁸⁾ a réanalysé l'expérience de Zipf et a montré qu'au lieu de mesurer les vitesses de RD des niveaux v = 0,1 et 2, ce dernier avait mesuré une vitesse effective pour des ions à une température vibrationnelle proche de 1500°K. Les résultats les plus controversés proviennent d'une étude par Noren et al (1989)⁽⁹⁾ qui mesurèrent la RD de $N_2^+(v = 0)$ et calculèrent une vitesse de RD à 300°K de 3,6 10⁻⁸ cm³ s⁻¹. Les résultats de Noren, que nous avons confirmé, sont présentés figure 3.

Figure 1 : Courbes d'énergie potentielle impliquées dans la RD de N_2^+

Figure 2 : Sections efficaces de RD de N_2^+

Les sections efficaces (ou les vitesses de RD) demeurent quatre fois plus faibles que celles calculées d'après la théorie. Cette situation inexplicable nous a motivé à préparer l'expérience LIF décrite ci-dessous.

Figure 3 : Sections efficaces de RD de N₂⁺ mesurées par Merged Beams

VIII. 2. 4 Expérience en fluorescence induite par laser (LIF)

VIII. 2. 4. a Dispositif expérimental

La figure 4 illustre le dispositif qui sera utilisé (vue de dessus) : un système optique mobile, composé d'un miroir collecteur de photons et d'un photomultiplicateur, ainsi qu'une décharge secondaire seront ajoutés au FALP usuel (chapitre V). Un nouveau caisson a été conçu et réalisé à cet effet.

Figure 4 : Schéma de principe de l'expérience LIF sur la RD de N₂⁺

VIII. 2. 4. b Principe de l'expérience

A l'inverse d'une expérience FALP classique où l'on cherche à mesurer des vitesses de RD d'ions vibrationnellement relaxés, la démarche est ici de maintenir l'excitation vibrationnelle de N_2^+ ; c'est le rôle de la décharge secondaire.

L'ion N_2^+ est formé⁽¹⁰⁾ dans la cavité principale à partir de l'ion Ar^+ produit suivant la procédure classique :

$$Ar^{+} + N_{2} \rightarrow N_{2}^{+}(v=1) + Ar \qquad (VIII. 3)$$

Le premier niveau vibrationnel de N_2^+ est rapidement quenché par échange symétrique de charges selon ⁽¹¹⁾:

$$N_2^+(v=1) + N_2 \rightarrow N_2 + N_2^+(v=0)$$
 (VIII. 4)

De plus, il faut que le débit d'azote soit suffisant pour que l'échange de charges ait lieu avant la réaction inverse ⁽¹⁰⁾ de (VIII. 3) plus rapide que la réaction directe :

$$N_2^+(v=1) + Ar \rightarrow Ar^+ + N_2 \qquad (VIII. 5)$$

La décharge secondaire est une décharge d'azote qui permet de chauffer la vibration de N₂. Ainsi par échange symétrique de charges entre les ions N₂⁺(v = 0) de la décharge principale et les molécules N₂(v) de la décharge secondaire, il est possible de produire des ions N₂⁺ vibrationnellement (très) chauds.

$$N_2^+(v=0) + N_2(v) \rightarrow N_2(v=0) + N_2^+(v)$$
 (VIII. 6)

Les vitesses de RD sont mesurées à une température électronique T_e précise, en général dans un plasma à l'équilibre thermodynamique de 300°K. Une étude préliminaire nous a permis de nous assurer que l'azote $N_2(v)$ ne réchauffe pas les électrons par transfert d'énergie⁽¹²⁻¹³⁾. La température électronique est donc indépendante de la température vibrationnelle des ions N_2^+ .

VIII. 2. 4. c Mesure des vitesses de RD de $N_2^+(v)$

Dans l'hypothèse où N_2^+ est le seul ion présent dans l'écoulement qui recombine dissociativement avec les électrons, l'équation de transport est :

$$v \frac{d[N_2^+]}{dz} = -\alpha_{global} [N_2^+] n_e$$
 (VIII. 7)

$$v\frac{d[N_{2}^{+}]}{dz} = -\alpha_{0} [N_{2}^{+}(v=0)]n_{e} - \alpha_{1} [N_{2}^{+}(v=1)]n_{e} - \alpha_{2} [N_{2}^{+}(v=2)]n_{e}$$
(VIII. 8)

$$v \frac{d[N_{2}^{+}]}{dz} = -\alpha_{0} \frac{\left[N_{2}^{+}(v=0)\right]}{\left[N_{2}^{+}\right]} n_{e}[N_{2}^{+}] - \alpha_{1} \frac{\left[N_{2}^{+}(v=1)\right]}{\left[N_{2}^{+}\right]} n_{e}[N_{2}^{+}] - \alpha_{2} \frac{\left[N_{2}^{+}(v=2)\right]}{\left[N_{2}^{+}\right]} n_{e}[N_{2}^{+}] (VIII. 9)$$

Pour une distribution de type Maxwell-Boltzmann des niveaux vibrationnels nous avons :

$$\frac{\left[N_{2}^{+}(v)\right]}{\left[N_{2}^{+}\right]} = \frac{e^{\frac{-E_{v}}{kT_{v}}}}{\sum_{v=0}^{\infty} e^{\frac{-G(v)hc}{kT_{v}}}}$$
(VIII. 10)

avec

$$G(v) = \omega_{e}(v+1/2) - \omega_{e}x_{e}(v+1/2)^{2} + \omega_{e}y_{e}(v+1/2)^{3}$$
(VIII. 11)

Les termes spectroscopiques ω_e , $\omega_e x_e$ et $\omega_e y_e$ exprimés en cm⁻¹ sont tabulés pour un état électronique donné.

$$v\frac{d[N_{2}^{+}]}{dz} = -\frac{\left[\alpha_{0}e^{\frac{-E_{0}}{kT_{v}}} + \alpha_{1}e^{\frac{-E_{1}}{kT_{v}}} + \alpha_{2}e^{\frac{-E_{2}}{kT_{v}}} + ...\right]}{Q_{v}}[N_{2}^{+}]n_{e} = -\alpha_{global}[N_{2}^{+}]n_{e}$$
(VIII. 12)

La fonction de distribution de vibration est Q_v.

En pratique, il s'agira de mesurer une vitesse de recombinaison globale pour une température vibrationnelle donnée, et de répéter cette procédure pour différentes températures T_v en variant les conditions de la décharge secondaire. Le système optique mobile permet de mesurer la température vibrationnelle qui correspond à chacune des mesures de vitesse et de s'assurer que cette température est constante le long de l'écoulement.

<u>VIII. 2. 4. d</u> Mesure de la température vibrationnelle par LIF Pour simplifier, considérons les deux niveaux suivants :

Les populations du niveau (X", v"), de dégénérescence g", avec et sans laser, sont respectivement N_{v"} laser et N_{v"}; il en est de même pour le niveau (X, v). Le laser sonde peuple le niveau (X, v) à partir du niveau (X", v"); il s'en suit un signal de fluorescence dont l'intensité est donnée par :

$$I_{\text{fluorescence}} \prec q_{(v',v'')} N_{v' \text{laser}}$$
(VIII. 13)

Chaque transition possède un facteur de Franck-Condon $q_{(v', v'')}$, dont l'ensemble est tabulé, comme pour N_2^+ (¹⁴). Dans le cas où la transition est saturée par le laser, il existe une relation simple entre le niveau $N_{v''}$ initial, caractérisé par une distribution Maxwell Boltzmann (T_v), et le niveau $N_{v'}$ laser :

$$N_{v'laser} = \frac{g}{g' + g''} N_{v''}$$
 (VIII. 14)

Les niveaux vibrationnels ne sont pas dégénérés : g' = g'' = 1. L'intensité de fluorescence s'écrit finalement :

$$I_{\text{floorescence}} \prec q_{(v',v'')} e^{\frac{-G(v'')hc}{kT_v}}$$
(VIII. 15)

En fait, cette fluorescence se répartit vers différents niveaux vibrationnels de X[°]. Il est possible de sonder plusieurs transitions intéressantes et de comparer le spectre expérimental obtenu à un spectre synthétique ; la température vibrationnelle du niveau X[°] est alors déduite. Le laser MOPO, dont s'est doté le laboratoire, sera utilisé dans le proche ultraviolet (391,4 nm) ; il est prévu que le rayon laser passe suivant l'axe de la décharge principale. Un photomultiplicateur permettra de recueillir les photons de fluorescence induite. Deux programmes sont disponibles au laboratoire pour créer des spectres synthétiques qui, superposés aux spectres expérimentaux, permettront de calculer la température vibrationnelle. Nous espérons ainsi, grâce à l'expérience décrite dans ce chapitre, mesurer les vitesses de RD de N₂⁺ en fonction du niveau vibrationnel.

Bibliographie

(1) M.K. Wallis Planet. Space Sci., <u>26</u>, 949, (1978). Science, 194, 1298, (1976). (2) A. O.Nier and M.B. MacElroy (3) S.L.Guberman « Dissociative Recombination : Theory, Experiment and Applications » (Editors B.R.Rowe, J.B.A. Mitchell and A. Canosa, 313, 47, 1993). J.Phys. B, <u>5</u>, 2328, (1972). (4) A.J. Cunningham and R.M. Hobson (5) E.C. Zipf Geophys. Res. Lett., 7, 645, (1980). (6) F.J. Mehr and M.A. Biondi Phys. Rev., 181, 264, (1969). (7) A. Canosa, J.C. Gomet, B.R. Rowe and J.L. Queffelec J. Chem. Phys., <u>94</u>, 7159, (1991). (8) R. Johnsen Int. J. Mass Spectrom. Ion Proc., 81, 67, (1987). (9) C. Noren, F.B. Yousif and J.B.A. Mitchell J. Chem. Soc. Faraday Trans., 85, 1697, (1989). (10) D. Smith and N.G. Adams Phys. Rev. A, 23, 2327, (1981). (11) W. Lindinger, F.Howorka, P. Lukac, S. Kuhn, H. Villinger, E. Alge and H. Ramler Phys. Rev. A, 23, 2319, (1981). (12) A.U. Hazi, T.N. Rescigno and M.Kurilla Phys. Rev. A, <u>23</u>, 1089, (1981). J. Phys. B, <u>18</u>, 4511, (1985). (13) M. Allan (14) A.M. Jorus-Bony, F. Vincent and R. Grandmontagne Comptes rendus de l'Académie des Sciences Paris, 270, 491, (1970).