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Outline
• Introduction
• Resonant Ion Pair Formation (Sweden)

– Experimental setup : CRYRING
– Results : HD+ and HF+

• Associative Ionization (Belgium)
– Experimental setup : MB2
– Results : H+ + H- and C+ + O-

• Conclusions



CRYRING Sweden

Circumference : 51.6m
Interaction region : 0.85 m



Analysis procedure
Important points

– Electron cooling (Reduction of the phase space of the ion beam by 

momentum transfer between the “cold” electrons and the “hotter” ion beam).
⇒lengthening of the lifetime
⇒cooling of the internal degree of freedom of a molecule with a sizeable dipole 

moment

– Detuning energy Ed = µ vd
2/2

⇒excellent energy resolution in the cm frame (1meV) - Use of the adiabatic 
decompression of an electron beam in a gradient magnetic field

⇒limitation due to the transverse motion of the electrons
⇒space charge correction on the centre-of-mass energies has to be achieved
⇒special caution concerning the drag force



– Measured parameter : rate coefficient
R(Ecm) = <σ(Ecm)vcm >

⇒True signal to be extracted from background coming from the molecular ions -
rest gas interactions

⇒possible complications due to the “trapping effect” ?



DISSOCIATIVE RECOMBINATION
AB+ (v=0, J) + e →A(LA, SA, JA) + B(LB, SB, JB) +KER

RESONANT ION PAIR FORMATION
AB+ (v=0, J) + e →A+(LA, SA, JA) + B-(LB, SB, JB) +KER 

⇒ In a storage ring, the target molecular ion can be prepared in 
its electronic and vibrationnal ground states
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SHARP THRESHOLD AT 1.92 eV!

-Few percents of the DR signal
-Only the D- channel was recorded
(roughly 1/3 of the total signal)

RIP HD+ (X2Σ+
g, v = 0) + e → H+ + D-





Peaks 10-14 :
-10 :  Franck-Condon transition from the 
ground state of the ion to the (2pσu)2

-14 :  Transition to Rydberg states below 
the (2pσu) ion state
Peaks 6-9 :PROBLEM

Peaks 1-5 :
Resonant capture into high v levels of bound
Rydberg states of HD, followed by predissociation
through (2pσu)2 which correlates to H+ + D-

Potential curves for HD+/HD



The 1Σg
+ (2pσu)2 ion pair state crosses many of the Rydberg state 

potentials twice (of same symmetry) : both at small and large 
internuclear separation 
⇒coupled by the electronic part of the hamiltonian



Landau - Zener - Stuckelberg calculations

The energy-dependent (semi-classical) phases accumulated along the different pathways have to 
be taken into account : 

The transition amplitudes at the curve crossings are treated by the L-Z method and the product 
amplitudes are added coherently. The autoionization is included by a complex term of the 
dissociative potential and the capture probability is estimated by assuming a delta nuclear wave 
function of the dissociative state. Thus, the cross section for the ion- pair formation  becomes : 
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-We looked into the F- channel
-No RIP threshold
-Strong competition between DR and RIP (ratio 3/1 at 0eV)
-Correlations and Anticorrelations (selection rules for photons)

DR HF+ (X2Π, v = 0) + e → H + F
RIP HF+ (X2Π, v = 0) + e → H+ + F-



Duoplasmatron 
source

ECR ion source

Wien filters : 
Beam velocity selection 

Filters
 Wien

Quadripoles

Deflectors

(movable)
Deflectors

Probes

Beam
defining

slits

A B+

Deflector

MB2 machine
UCL Belgium

αGαD

Merging conditions : 
αG/αD = AD/AG

Cylindrical deflectors

Diaphragms 1mm

Horizontal and vertical
deflectors

Movable plate



CINEMATICS OF THE EXPERIMENT
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With : 
q1 = qG = 1 m1 = mG A1 = AG
q2 = qD = -1 m2 = mD A2 = AD
Beams assumed to be monoenergetic and with velocities close from each other in the lab frame !

and : 
Observation potential V0

ENERGY RESOLUTION : 2meVat Ecm = 10meV !!!!!!!!!!!!!

Center-of-mass energy in the interaction region (for beams merging at 0 

angle) : 
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DETERMINATION OF THE CROSS SECTION
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With : 
q1 = qG = 1 v1 = vG I1 = IG
q2 = qD = -1 v2 = vD I2 = ID

and : 
Relative velocity vr
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ASSOCIATIVE IONIZATION
A(LA, SA, JA) + B(LB, SB, JB) → AB+ (Elect, v, J) + e +KER 

A+(LA, SA, JA) + B-(LB, SB, JB) → AB+ (Elect, v, J) + e +KER 
•Efficient process when the time spent by the nuclei in the binding part 
of the potential is in the same order than the vibrating period.
•The product molecular ion is formed in different electronic, vibrationnal 
and rotational states !
•When the dissociation energy of the molecular ion is overcome, the 
Penning ionization is competing. 
•To have more infos concerning the v, N distributions, means to record 
the energy spectrum of the electrons ; NOT POSSIBLE with this setup! 



H+ + H-(1s2) → H2
+ + e
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The 1Σ+
u B”B and 1Σ+

g states are 
identical at large nuclear separations 
but slightly different otherwise !



-There is only one H2
+ electronic state which can be 

populated from H+ + H- at low energy. 

⇒this might have some influence on the magnitude 
of the cross section ( 1 10 -15 cm2 at 0.08eV). 

-Sharp cutoff at 3eV (competition with the Penning 
ionization). 
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• -Very large cross sections !
σ = 6 10-14 cm2 at 10 meV

Possible reasons : number of exothermic channels !
• Different electronic states for CO+ (X2Σ+, A2Π, B2Σ+, C2∆, D2Π).
• Possible rovibronic excitation of the molecular ion. 
• Many potential curves to drive the process : the correlation rules for 

the ionic states give 2x Σ+

1x Σ-

2x Π
1x ∆

Both singlet and triplet states !!

• -Cutoff at 6 eV (Penning Ionization)



Links between RIP and AI

• Theoretical cross sections (Development in partial waves) : 
σRIP

(v,N)(Ecm)=Π/kcm
2  Sv,N2

σAI
(v,N)(E’cm)=Π/k’cm

2 ΣNΣv Sv,N2 (2N+1)
The matrix elements are given by : 
S = (1+iK)/(1-iK) with iK ≈ -ΠV and V ≈ < 1/r12>



Conclusion and perspectives
• Results concerning the RIP process

-Rosenthal oscillations for HD+. 
-Data for HF+ for which DR and RIP present the 
same trend. 

• Results concerning the AI process
-H+ + H- : interplay between gerade and ungerade 
states. 
-C+ + O- : large cross sections due to the manifold of 
possible exit channels. 
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