Fragmentation of multiply-charged small hydrocarbon molecules C_nH^{q+} (n=1-3, q=2-6) produced in high velocity collisions: Branching ratios and kinetic energy releases of the H⁺ fragment

K.Béroff¹, M.Chabot², T.Pino¹, N.G.Van-Oanh³, T.Tuna², A.Le Padellec⁴, P.Désesquelles⁵, G.Martinet²

¹Institut des Sciences Moléculaires, CNRS and University Paris Sud, 91405 Orsay (France)
²Institut de Physique Nucléaire, CNRS-IN2P3 and University Paris Sud 91406 Orsay Cedex (France)
³Laboratoire de Chimie Physique CNRS and University Paris Sud, 91405 Orsay (France)
⁴Centre d'Etudes spatiales des rayonnements CNRS and University Toulouse III, F-31028 Toulouse Cedex (France)

⁵Centre de Spectrométrie Nucléaire et de Spectrométrie de masse, CNRS-IN2P3 and University Paris Sud, 91405 Orsay Cedex (France)

In a recent work (Chabot et al this conference and PRL **104**, 043401 (2010)), we showed how fragmentation of multi-charged carbon clusters C_n^{q+} strongly evolves with the strength of the coulomb interaction. In this work, we pursued these studies on new C_n^{Hq+} species (n=1-3, q=2-6) and added a new experimental observable: the kinetic energy release of the H⁺ fragment KER-H⁺, extracted for each dissociation channel.

Ionization cross sections

Measured ionization cross sections of in $C_nH^{q_+}$ -He collisions at v=4.5 a.u; lines are to guide the eye (left). Comparison between measured and calculated (IAE model) ionization cross sections in $C_3H_2^+$ at v=4.5a.u (middle). Calculated (IAE model) valence and 1s ionization cross sections in CH⁺-He at v=3.6 a.u (right)

KER-H⁺ measurements

& comparison with the point charge coulomb model

Characteristics of measured KER-H⁺ distributions for various dissociation channels of $C_nH^{q_+}$ molecules. A Gaussian shape (E1c: peak position, σ 1: standard deviation was assumed) (left)

Comparison between measured KER values and predictions of the point charge coulomb model (PCCM) (right)

KER calculations (CH^{q+} case)

UNIVERSITÉ PARIS-SUD 11

-				
State	CH^+	CH ⁺⁺	CH ³⁺	CH^{*+}
Ground state	$X^{1}\Sigma^{+}(0)$	$1 {}^{2}\Sigma^{+}(0)^{*}, **$	$1 \Sigma^{+}(0)^{*},^{**}$	$1 {}^{2}\Sigma^{+}(0)^{*},^{**}$
	$(1\sigma^2 2\sigma^2 3\sigma^2)$	$(1\sigma^2 2\sigma^2 3\sigma)$	$(1\sigma^2 2\sigma^2)$	$(1\sigma^2 2\sigma)$
First Excited state	а ³ П (0.98)	$1^{2}\Pi$ (3.6)**	$1^{3}\Sigma^{+}(5.9)^{*},^{**}$	$2^{2}\Sigma^{+}(11)*,**$
	$(1\sigma^2 2\sigma^2 3\sigma 1\pi)$	$(1\sigma^2 2\sigma^2 1\pi)$	$(1\sigma^2 2\sigma 3\sigma)$	$(1\sigma^2 3\sigma)$
Second excited		$2^{2}\Sigma^{+}(10)^{*}$	1 ³ Π (8.4)**	1 ² Π (12.1)**
state		$(1\sigma^2 2\sigma 3\sigma^2)$	$(1\sigma^2 2\sigma 1\pi)$	$(1\sigma^2 1\pi)$
Third excited		2 ² Π (13.1)**	$2^{1}\Sigma^{+}(10.1)^{*}, **$	$3^{2}\Sigma^{+}(31.7)$
state		$(1\sigma^2 2\sigma 3\sigma 1\pi)$	$(1\sigma^2 2\sigma 3\sigma)$	$(1\sigma^2 4\sigma)$
Fourth excited		3 ² П (15.2)**	1 ¹ Π (13.5)**	
state		$(1\sigma^2 2\sigma 3\sigma 1\pi)$	$(1\sigma^2 2\sigma 1\pi)$	
Fifth excited state		$1^{2}\Delta$ (16)	2 ³ П (20.5)**	
		$(1\sigma^2 2\sigma 1\pi^2)$	$(1\sigma^2 3\sigma 1\pi)$	
Sixth excited state		$3^{2}\Sigma^{+}(17.5)$	$3 {}^{1}\Sigma^{+}(21.1)^{*}$	
		$(1\sigma^2 2\sigma^2 4\sigma)$	$(1\sigma^2 3\sigma^2)$	
Seventh excited		$1^{2}\Sigma^{-}(18.2)$	$1^{3}\Sigma^{-}(22.85)$	
state		$(1\sigma^2 2\sigma 1\pi^2)$	$(1\sigma^2 1\pi^2)$	
Eigth excited state			2 ¹ П (24.3)**	
			$(1\sigma^2 3\sigma 1\pi)$	

Calculated electronic excited states of CH+, CH++, CH+++ and CH4+ by the CASSCF method using the MOLPRO package

Comparison between measured and calculated KER-H⁺

Dynamics associated to Auger relaxation

1s ionization contributes to 80% to the CH⁴⁺ production cross section The dynamics of relaxation of the 1s hole, of the order of 10fs in C^(+/++), strongly influences the KER value, as calculated within the PCCM model (figure below)

Partitioning of energy in (C₃H)⁺⁺

Partitioning of energy in the fragmentation of $(C_3H)^{++}$ amongst 4 channels: C_3^+/H^+ (short dashed line), $C_2/C^+/H^+$ (dash-dot line), $C_2/C/H^+$ (solid line) and $C/C/C/H^+$ (dotted line).

