

L3 LICENCE PHYSIQUE CHIMIE APPLICATION Mention physique fondamentale

Examen de Mécanique Quantique du 23 janvier 2007

Module 2L5PY11

Durée: 3h - Tous documents interdits

OSCILLATEUR HARMONIQUE

Les deux parties du problème sont totalement indépendantes.

PARTIE A:

On considère un oscillateur harmonique de masse m, et de pulsation ω . A l'instant t=0, l'état de cet oscillateur est donné par : $|\Psi(0)\rangle = \sum_n C_n |\varphi_n\rangle$ où les états $|\varphi_n\rangle$ sont les états stationnaires d'énergie $E_n = (n+1/2)\hbar\omega$.

- 1. Décomposer l'état $|\Psi(t)\rangle$ pour tout t postérieur à l'instant origine sur la base des $|\varphi_n\rangle$.
- 2. Quelle est la probabilité P pour qu'une mesure de l'énergie de l'oscillateur, effectuée à un instant t > 0 quelconque, donne un résultat *supérieur* à $2\hbar\omega$? Lorsque P = 0, quels sont les coefficients C_n non nuls ?
- 3. On suppose à partir de maintenant que seuls C_0 et C_1 sont différents de zéro. Ecrire en fonction de C_0 et C_1 la condition de normalisation de $|\Psi(0)\rangle$ ainsi que la valeur moyenne $\langle H \rangle$ de l'énergie.

On suppose de plus $\langle H \rangle = \hbar \omega$; calculer $|C_0|^2$ et $|C_1|^2$.

4. Le vecteur d'état normé $|\Psi(0)\rangle$ n'étant défini qu'à un facteur de phase globale près, on fixe ce facteur de phase en prenant C_0 réel et positif. On pose l'autre coefficient égal à $C_1 = |C_1| \exp(i\theta_1)$. Outre la valeur précédente de l'énergie moyenne $\langle H \rangle = \hbar \omega$, on suppose de plus que $\langle X \rangle = \frac{1}{2} \sqrt{\frac{\hbar}{m\omega}}$. Calculer θ_I .

Pour se faire, on explicitera d'abord $|\Psi(0)\rangle$, puis $\langle X\rangle = \langle \Psi(0)|X|\Psi(0)\rangle$. On rappelle l'expression de $X=\sqrt{\frac{\hbar}{2m\omega}}(a+a^+)$, avec a et a^+ les opérateurs d'annihilation et de

création d'un quantum de vibration, ainsi que les deux relations de récurrence $a|\varphi_n\rangle=\sqrt{n}|\varphi_{n-1}\rangle$ et $a^+|\varphi_n\rangle=\sqrt{n+1}|\varphi_{n+1}\rangle$.

5. $|\Psi(0)\rangle$ étant ainsi déterminé par la valeur de θ_I , écrire $|\Psi(t)\rangle$ pour t>0, et calculer la valeur de θ_I à l'instant t, $\theta_1(t)$. En déduire la valeur moyenne $\langle X \rangle$ (t) de la position à l'instant t.

PARTIE B:

Dans cette partie, on utilisera le théorème suivant : si deux opérateurs R et S commutent avec leur commutateur [R,S], alors $\exp(R)\exp(S)=\exp(R+S)\exp\left(\frac{1}{2}[R,S]\right)$.

- 1. Considérons l'opérateur $D(\alpha) = \exp(\alpha a^+ \alpha^* a)$, avec α la valeur propre associée aux états propres $|\alpha\rangle$ de l'opérateur création a. Donner $D^+(\alpha)$. Calculer $D^+(\alpha)D(\alpha)$ et $D(\alpha)D^+(\alpha)$, et conclure quant au caractère unitaire de l'opérateur $D(\alpha)$.
- 2. Montrer que $D(\alpha)|\varphi_0\rangle = \sum_n \frac{\exp(-|\alpha|^2/2)\alpha^n}{\sqrt{n!}}|\varphi_n\rangle = |\alpha\rangle$.

Indication : on posera $R = \alpha a^+$ et $S = -\alpha^* a$. On rappelle –en outre- que $\exp(x) = \sum_{n=1}^{\infty} \frac{x^n}{n!}$.

3. Calculer le commutateur $[a, a^{+2}]$ en fonction de $[a, a^{+}]$ et de a^{+} . On rappelle que $[a, a^{+}] = 1$. Dans le but de généraliser ce calcul au commutateur $[a, a^{+n}]$, on admettra le résultat $[a, a^{+n}] = n[a, a^{+}]a^{+(n-1)}$ à l'ordre n ; le démontrer par récurrence à l'ordre n + 1.

On considère maintenant l'opérateur $F(a^+) = \sum_n C_n a^{+n}$. Montrer, à l'aide des résultats précédemment établis, que $\left[a, F\left(a^+\right)\right] = \frac{d}{da^+} F\left(a^+\right)$.

Reprendre les calculs précédents, i.e. celui du commutateur $[a^+, a^n]$. On considère cette fois-ci l'opérateur $G(a) = \sum_n B_n a^n$. Etablir que $[a^+, G(a)] = -\frac{d}{da} G(a)$.

Comparer $[a,D(\alpha)]$ à $[a,F(a^+)]$, et en déduire que $D^{-1}(\alpha)aD(\alpha)=a+\alpha$. Montrer similairement que $D^{-1}(\alpha)a^+D(\alpha)=a^++\alpha^*$.

4. En utilisant tout ce qui précède, montrer que $aD^{-1}(\alpha)|\alpha\rangle = 0$ et retrouver par cette méthode que $|\alpha\rangle = D(\alpha)|\varphi_0\rangle$.

OPERATEUR D'EVOLUTION D'UN SPIN 1/2 (1H)

On considère un spin ½, de moment magnétique $M = \gamma S$, plongé dans un champ magnétique B_0 de composante $B_x = -\omega_x / \gamma$, $B_y = -\omega_y / \gamma$, $B_z = -\omega_z / \gamma$. Le terme d'interaction magnétique vaut alors $W = -M \cdot B_0$. On pose $\omega_0 = -\gamma |B_0|$.

1. Montrer que l'opérateur d'évolution de ce spin s'écrit $U(t,0) = \exp(-iMt)$ avec $M = \frac{1}{\hbar} \left[\omega_x S_x + \omega_y S_y + \omega_z S_z \right].$

Calculer la matrice représentant $M = \frac{1}{2} \left[\omega_x \sigma_x + \omega_y \sigma_y + \omega_z \sigma_z \right]$ dans la base $\{ + \rangle, |-\rangle \}$ des vecteurs propres de S_z . On rappelle que $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ et $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ sont les trois matrices de Pauli.

Montrer enfin que $M^2 = \frac{1}{4} \left[\omega_x^2 + \omega_y^2 + \omega_z^2 \right] = \left(\frac{\omega_0}{2} \right)^2$.

- 2. Mettre l'opérateur d'évolution sous la forme $U(t,0) = \cos\left(\frac{\omega_0 t}{2}\right) \frac{2i}{\omega_0} M \sin\left(\frac{\omega_0 t}{2}\right)$. On rappelle les relations $\cos(x) = \sum_n (-1)^n \frac{x^{2n}}{(2n)!}$ et $\sin(x) = \sum_n (-1)^n \frac{x^{2n+1}}{(2n+1)!}$. Expliciter la matrice U(t,0) correspondante.
- 3. On considère un spin qui à l'instant t = 0 est dans l'état $|\Psi(0)\rangle = |+\rangle$.

Montrer que la probabilité $P_{++}(t)$ que l'on a de le trouver à l'instant t dans l'état $|+\rangle$ est donnée par $P_{++}(t) = \left|\left\langle +\left|U(t,0)\right| + \right\rangle\right|^2$, et établir la relation $P_{++}(t) = 1 - \frac{\omega_x^2 + \omega_y^2}{\omega_0^2} \sin^2\left(\frac{\omega_0 t}{2}\right)$. Interprétation géométrique.