

Licence Physique Chimie et Applications L2 Mention physique 2L4PY2M

Examen de Physique quantique

Durée : 1h30 Tout document interdit

EXERCICE n°1

Une théorie physique établit des relations (ou des lois) entre certains de ses concepts de base. Dans ces relations apparaissent des constantes fondamentales liées au choix des unités $(1/4\pi\epsilon_0)$ en électromagnétisme, c en mécanique relativiste, k en thermodynamique statistique, ...). L'effet photoélectrique, le rayonnement du corps noir ont fait introduire une nouvelle constante fondamentale \hbar , la constante de Planck réduite, qui caractérise la physique quantique.

- 1. Exprimer la dimension physique de \hbar en fonction
 - a. des unités des grandeurs fondamentales du système international (SI),
 - b. de l'unité d'énergie et d'une unité à préciser. On rappelle la valeur numérique de la constante de Planck $h = 6.62 \times 10^{-34} \text{ SI}.$
- 2. On appelle 'action' toute grandeur ayant la même dimension physique que \hbar . Calculer, en unité \hbar , l'action associée aux cas suivants :
 - a. le mouvement circulaire d'une aiguille de montre fixée en un point O, de masse θ , I g et de longueur 5 mm, et qui parcours le cadran en 100 ms. On cherchera à comparer les dimensions physiques du moment cinétique associé au mouvement de l'aiguille et du quantum \hbar , le moment d'inertie de l'aiguille par rapport à O valant $ml^2/3$,
 - b. une antenne radio de puissance I kW et qui émet à IMhz,
 - c. La collision, dans un tube de Crooks, d'électrons accélérés par une tension de 50000 V sur une plaque de cuivre produisant des rayons X de longueur d'onde 0.16 nm.
- 3. Des trois cas traités ci-dessus, le(s)quel(s) relève(nt) de la physique quantique?

EXERCICE n°2

On considère le potentiel V(x) défini par :

$$V(x) = V_0 \left(\frac{a^2}{x^2} - 2\frac{a}{x} \right) \quad \text{pour } x \ge 0,$$

$$V(x) = \infty \quad \text{pour } x < 0.$$

- 1. Représenter graphiquement V(x) en fonction de x pour $x \ge 0$.
- 2. On considère une particule de masse m soumise à ce potentiel V(x) et on pose -pour tout ce qui suit- V_0 $a^2 = \hbar^2/m$. Ecrire l'équation de Schrödinger correspondant à un état stationnaire d'énergie négative $E = -\varepsilon (\varepsilon > 0)$. Chercher une solution de la forme :

$$\phi_0(x) = A x^{\alpha} \exp(-\lambda x)$$
 pour $x \ge 0$ et A une constante,
 $\phi_0(x) = 0$ pour $x < 0$,

i.e., trouver les coefficients α et λ tels que la fonction d'onde $\phi_0(x)$ soit solution de l'équation de Schrödinger. Des deux valeurs α possibles, quelle est celle physiquement acceptable? Calculer le terme V_0 a^2 (en MeV x cm²) pour un électron de masse 9, 1×10^{-31} kg. La valeur de la constante de Planck est précisée dans l'exercice $n^{\circ}I$.

3.

- a. Normer la fonction d'onde $\phi_0(x)$ en explicitant la valeur de A.
- b. Calculer la valeur moyenne \bar{x} de la coordonnée x en fonction de a.
- c. Calculer la valeur moyenne \bar{p}_x de l'impulsion p_x .

On donne
$$\int_{0}^{\infty} x^{n} \exp(-px) dx = \frac{n!}{p^{n+1}}$$