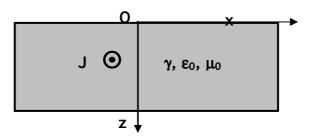
TD 4 - Equations de Maxwell (II)

I. Courant dans un conducteur en régime variable

Un conducteur métallique de conductivité γ , de permittivité ϵ_0 =8.85 $10^{\text{-}12}$ F.m⁻¹ et de perméabilité μ_0 =4 π 10⁻⁷ H.m⁻¹, est le siège d'un courant volumique J sinusoïdal de pulsation élevée ω . On admet que la loi d'Ohm locale liant le courant volumique et le champ électrique est vérifiée dans le domaine de fréquences considérées.

- 1. Ecrire les équations de Maxwell pour ce milieu non chargé électriquement (ρ =0).
- 2. Définir le courant de déplacement J_D et montrer qu'à très haute fréquence son amplitude est négligeable devant celle du courant de conduction J_C (on prendra l'exemple du cuivre de conductivité $\gamma = 5.7 \cdot 10^7 \, \text{S. m}^{-1}$ à la fréquence $v=100 \, \text{MHz}$. On négligera par la suite le courant de déplacement dans le conducteur.
- 3. En combinant les équations de Maxwell et la loi d'Ohm locale, montrer que J satisfait à une équation aux dérivées partielles de la forme : $\Delta J \alpha \frac{\partial J}{\partial t} = 0$, où α est une constante à déterminer en fonction de μ_0 et γ . On rappelle que \overrightarrow{rot} (\overrightarrow{rot} \overrightarrow{F}) = \overrightarrow{grad} (\overrightarrow{div} \overrightarrow{F}) $\Delta \overrightarrow{F}$ où \overrightarrow{F} est champ de vecteur.

Le conducteur occupe le demi-espace z > 0 d'un repère orthonormé (Oxyz) et le courant volumique \vec{J} est parallèle à l'axe Oy et ne dépend que du temps t et de z: $\vec{J} = J(z,t)\vec{e}_y$.



- 4. Ecrire l'équation aux dérivées partielles satisfaite par J(z,t). Vérifier qu'en notation complexe l'expression $\underline{J}(z,t) = J_0 \exp[i(\frac{z}{\delta} wt)]$ est solution de cette équation. Expliciter δ en fonction de ω , μ_0 et γ . Calculer δ en précisant son unité et conclure sur la pénétration du courant dans un conducteur à très haute fréquence. 5. Donner l'expression réelle de J dans le conducteur et en déduire le champ
- 5. Donner l'expression réelle de J dans le conducteur et en déduire le champ électrique $\overrightarrow{E}(M,t)$ en tout point M du conducteur. Calculer la puissance volumique moyenne P_{J} dissipée par effet Joule dans le conducteur.

II. Effet de peau à la surface d'un bon conducteur

On considère un conducteur qui occupe l'espace z>0 d'un référentiel Oxyz et qui est défini par ϵ_0 , μ_0 et sa conductivité γ . On étudie les conditions d'existence d'un champ électromagnétique sinusoïdal de pulsation ω tel que : $\mathbf{E} = \mathbf{E}(z)$ exp($i\omega t$) et $\mathbf{B} = \mathbf{B}(z)$ exp($i\omega t$) où $\mathbf{E}(z)$ et $\mathbf{B}(z)$ ont des composantes complexes. On admet que $\gamma >> \epsilon_0$ ω .

- 1. Vérifier que les équations de Maxwell en représentation complexe peuvent s'écrire
- (1) **rot** $\mathbf{E}(z) = -i \ \omega \ \mathbf{B}(z)$; (2) div $\mathbf{E}(z) = 0$; (3) div $\mathbf{B}(z) = 0$; (4) **rot** $\mathbf{B}(z) = \mu_0 \ (\gamma + i \ \epsilon_0 \ \omega) \ \mathbf{E}(z)$.

Etablir les équations différentielles vérifiées par $\mathbf{E}(z)$ et $\mathbf{B}(z)$. On posera $\delta = (2/\mu_0 \ \omega \ \gamma)^{1/2}$. On remarquera que $\mathbf{B}(z)$ s'élimine entre (1) et (4) en utilisant l'identité : **rot** (**rot** ($\mathbf{E}(z)$) = **grad** (div $\mathbf{E}(z)$) – Δ ($\mathbf{E}(z)$).

- 2. Quelle est la solution pour $\mathbf{B}(z)$ en admettant que le champ magnétique doit rester fini dans tout l'espace.
- 3. On admet maintenant que ${\bf B}$ est porté par Oy : ${\bf B}$ = B(z) exp(i ω t) ${\bf e}_y$. Donner l'expression de ${\bf B}$ en fonction de ω , t, z, d, ${\bf e}_y$ et B(0), puis l'expression de ${\bf B}$ en notation réelle.
- 4. Exprimer le champ électrique ${\bf E}$ en fonction de B(0), z, γ , et δ . Donner l'expression de ${\bf E}$ en notation réelle.
- 5. On considère un cylindre d'axe Oz. On appelle S la section du cylindre appartenant au plan xOy. Calculer la valeur moyenne du flux du vecteur de Poynting ${\bf R}$ à travers S en fonction de δ , γ , S, μ_0 et B(0)². Que représente cette quantité ?