EXAMEN DE MECANIQUE (SECONDE SESSION)

(Durée: 1h30)

Exercice 1 : Manège du "service à thé"

Sur le plateau (\mathcal{P}) d'un manège (plateforme circulaire de centre O et de rayon R), on a installé un disque (\mathcal{D}) , de centre C et de rayon r < R, sur la circonférence duquel est fixé un siège, repéré par le point M.

Le plateau (\mathcal{P}) du manège tourne avec une vitesse angulaire constante Ω autour de son axe vertical ascendant Oz, par rapport à son bâti, auquel est associé le référentiel galiléen $\mathcal{R}\left(O,\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z}\right)$.

Le disque (\mathcal{D}) a, par rapport au plateau (\mathcal{P}) , un mouvement de rotation uniforme, de vitesse ω autour de l'axe de révolution C_Z .

On définit les référentiels $\mathcal{R}_{\mathcal{P}}\left(O,\overrightarrow{e_{x'}},\overrightarrow{e_{y'}},\overrightarrow{e_{z}}\right)$ lié à (\mathcal{P}) , et $\mathcal{R}_{\mathcal{D}}\left(O,\overrightarrow{e_{1}},\overrightarrow{e_{2}},\overrightarrow{e_{z}}\right)$ lié au siège M de (\mathcal{D}) , avec $\left(\overrightarrow{e_{x'}},\overrightarrow{e_{x'}}\right) = \Omega t$ et $\left(\overrightarrow{e_{x'}},\overrightarrow{e_{1}}\right) = \omega t$.

On pose $\overrightarrow{OC} = L\overrightarrow{e_x}$ (L < R constant) et $\overrightarrow{CM} = r\overrightarrow{e_1}$.

- a) **Définir** les vecteurs rotation $\overrightarrow{Q}(\mathcal{R}_{\mathcal{P}}/\mathcal{R})$, $\overrightarrow{Q}(\mathcal{R}_{\mathcal{D}}/\mathcal{R}_{\mathcal{P}})$ et $\overrightarrow{Q}(\mathcal{R}_{\mathcal{D}}/\mathcal{R})$.
- b) **Calculer** indépendamment les unes des autres, les vitesses $\overrightarrow{V}(M/\mathscr{R}_{\mathscr{P}})$, $\overrightarrow{V_e}(M,\mathscr{R}_{\mathscr{P}}/\mathscr{R})$ et $\overrightarrow{V}(M/\mathscr{R})$. **Vérifier** la loi de composition des vitesses.
- c) **Calculer** indépendamment les unes des autres, les accélérations $\vec{a}(M/\mathcal{R}_{\mathcal{P}})$, $\vec{a}_e(M,\mathcal{R}_{\mathcal{P}}/\mathcal{R})$, $\vec{a}_c(M,\mathcal{R}_{\mathcal{P}}/\mathcal{R})$ et $\vec{a}(M/\mathcal{R})$. **Vérifier** la loi de composition des accélérations.
- d) **Déterminer** les forces d'inertie de Coriolis et d'entraînement subies par le point M.

Exercice 2 : Satellites artificiels

Soit $G = 6,67.10^{-11} \text{ m}^3.\text{kg}^{-1}.\text{s}^{-2}$ la constante de gravitation universelle, R = 6378 km le rayon moyen de la Terre, $M = 6,0.10^{24} \text{ kg}$ la masse de la Terre et T son centre.

- 1) Définir le référentiel géocentrique \mathcal{R}_o .
- 2) Dans l'approximation d'une répartition des masses à symétrie sphérique, déterminer l'expression du module g(r) du champ gravitationnel terrestre à une distance r > R de T. On le donnera ensuite en fonction de r, R, et $g_o = g(R)$.
- 3) Déterminer, en fonction de r, R, et g_o , la norme V(r) de la vitesse, dans le référentiel géocentrique, d'un satellite terrestre de masse m en orbite circulaire de rayon r autour de la Terre.
 - 4) En déduire la période T(r) du mouvement du satellite en fonction de r, R, et g_o .
- 5) Comparer l'énergie cinétique et l'énergie potentielle de gravitation d'un satellite en orbite circulaire.
 - 6) Donner l'énergie mécanique du satellite.
 - 7) Qu'appelle-t-on satellite géostationnaire ?
 - 8) Déterminer le plan de l'orbite d'un satellite géostationnaire.
 - 9) Peut-on lancer un satellite de telle sorte qu'il reste à la verticale de Paris ?

Questions de cours

Enoncer la relation fondamentale de la dynamique et le théorème du moment cinétique en un point fixe O de manière littérale et mathématique.