EXAMEN DE MECANIQUE - 2H

Mécanique du point

Questions de cours

- 1- Qu'est-ce qu'une force conservative ? Donner un exemple d'une force conservative et un autre d'une qui ne l'est pas.
- 2- Par le calcul, établir l'expression de l'énergie potentielle associée à la force de rappel d'un ressort, $\vec{F} = -k(x-x_0)$ \vec{e}_x où \vec{e}_x est l'axe du ressort, k sa raideur, x_0 sa longueur à l'équilibre et x sa longueur à chaque instant.
- 3- Enoncer le théorème de l'énergie mécanique

Mouvement en spirale

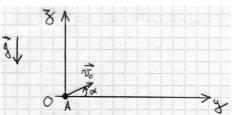
Dans le plan (xOy) du référentiel $R(O, \overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$, le mouvement d'un point P est décrit par la variation de ses coordonnées cartésiennes en fonction du temps t :

$$x = be^{-kt} coskt$$
; $y = be^{-kt} sinkt$ (b et k sont deux constantes positives)

- 1.a- Déterminer en fonction de t les coordonnées polaires ρ et ϕ de P.
- 1.b- En déduire l'équation polaire de la trajectoire de P.
- 1.c- Représenter la trajectoire.
- 2.a- Calculer en fonction de t les composantes polaires du vecteur vitesse $\overrightarrow{v_{P/R}}$.
- 2.b- En déduire l'angle $\alpha = (\overrightarrow{OP}, \overrightarrow{V_{P/R}})$.
- 2.c- Indiquer la nature du mouvement (uniforme, accéléré ou retardé).
- 3.a- Calculer en fonction de t les composantes polaires du vecteur accélération $\overrightarrow{a_{P/R}}$.
- 3.b- Préciser la direction de $\overline{a_{\scriptscriptstyle P/R}}$ et représenter ce vecteur sur la figure.
- 4.a- Calculer en fonction de t les composantes tangentielle et normale de $\overrightarrow{a_{P/R}}$.
- 4.b- En déduire la valeur du rayon de courbure de la trajectoire.

Mouvement sous l'action de la pesanteur

Dans un référentiel terrestre R supposé galiléen R $(O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$ (où Oz est la verticale ascendante et le sol correspond au plan (Oxy)), on étudie le mouvement du point A, de masse m et de coordonnées (x, y, z) sous la seule action de son poids. A l'instant t = 0, A se trouve en O et possède le vecteur vitesse $\vec{v}_0 = v_0 \cos(\alpha) \vec{e}_y + v_0 \sin(\alpha) \vec{e}_z$ avec $\alpha \in [0, \pi/2]$. (cf. Figure cidessous).



- 1. Déterminer les expressions de x(t), y(t) et z(t). Montrer que la trajectoire est plane.
- 2. On se place dans le cas général où $\alpha \neq \pi/2$.
 - 2.a Former l'équations cartésienne de la trajectoire et identifier celle-ci.
 - 2.b Représenter le graphe de la trajectoire. Indiquer l'altitude maximale.
 - 2.c Déterminer la distance y_c qui sépare O du point d'impact C de A sur le sol (y_c est la portée). Indiquer pour quelle valeur de α la portée est maximale.
- 3. Toujours avec α quelconque, le point A est soumis à une force supplémentaire de frottement $\vec{f} = -k\vec{v}_{A/R}$, où k est une constante et $\vec{v}_{A/R}$ son vecteur vitesse.
 - 3.a Etablir les équations différentielles auxquelles obéissent les composantes du vecteur vitesse. Calculer ces composantes et montrer qu'il existe une vitesse limite dont on déterminera les caractéristiques.
 - 3.b Déterminer les expressions de y(t) et de z(t). En admettant que z(t) peut prendre des valeurs < 0, montrer que la trajectoire admet une asymptote que l'on déterminera. A quel instant l'altitude est-elle maximale? Quelle est alors l'abscisse du sommet de la trajectoire. Comparer ce résultat avec la valeur obtenue en 2b en faisant tendre k vers 0.

Mécanique du solide

Questions de cours

- 1- Soit un référentiel galiléen $\Re = (O, \overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$. Comment est défini alors le référentiel R*?
- 2- A l'aide d'une formule et d'un schéma, définir le plus clairement possible la grandeur 'moment d'une force'.
- 3- Quelles sont les deux relations fondamentales de la dynamique qui interviennent en mécanique du solide ?

Eléments cinétiques d'une boule de billard

Dans un référentiel galiléen $\Re = (O, \overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$, où (Oz) est la verticale ascendante, on considère une boule de billard (sphère pleine homogène) de centre C, de masse M et de rayon a.

- 1- a) Quels sont les axes principaux d'inertie?
 - b) Déterminer le moment d'inertie I_C de la boule par rapport à C.
 - c) Montrer que les moments d'inertie par rapport à (Cx), (Cy) et (Cz), notés respectivement I_{Cx} , I_{Cy} et I_{Cz} vérifient : $I_{Cx} = I_{Cy} = I_{Cz} = 2/3$ I_{C} .
 - d) En déduire l'expression du moment d'inertie I_{Cx} de la boule en fonction de M et de a.
- 2- Un joueur lui communique une vitesse $\vec{v}_C = v_o$ $\mathbf{e_y}$, ainsi qu'une rotation angulaire $\vec{\omega}$ dirigée suivant \vec{e}_x .
 - a) Quelle est l'expression du moment cinétique en C par rapport à R noté $\vec{L}_{C/R}$? En déduire l'énergie cinétique E_{k/R^*} de rotation du ballon.
 - b) Quelle doit être la relation entre v_0 et ω pour qu'il y ait roulement sans glissement?