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Abstract. We present recent results obtained in the Toulouse’s group that deal with proton to 
base and nucleoside interactions. We stress the weakness of the sugar part in the nucleoside, 
i.e. the uridine molecule under scrutiny. Since some parts of the fragmentation spectrum 
correspond to the fragmentation of a ‘pure’ uracil molecule, i.e. the RNA base, an ‘additivity 
rule’ seems to prevail for the nucleoside, something that still has to be confirmed. Moreover, 
some results that deal with the secondary electronic emission from uracil are also displayed.  

1.  Introduction 
Radiotherapy is a non ablative tool used to sterilize tumoral cells while irradiating them with 
customized radiation beams. Subsequently, sterilization or irreversible DNA damage is the 
consequence of a complex chain of physical, chemical and biochemical events triggered by the energy 
deposition along the radiation track. A simulation of the irradiation is therefore essential to define and 
/ or refine the best radiotherapy strategy, and at the present time, several simulation codes are indeed 
available. Some of them are based on the simulation in a particular physical, chemical or biochemical 
stage with an ever-increased complexity [1] . Some others attempt to describe a sufficiently large time 
domain in order to bridge the gap between physical, chemical and biological stages [2] . In any case, 
the simulation transport of a moving particle within a given medium is managed through a Monte-
Carlo scheme built on the following pivotal points: type of interaction (target nature, ionization or 
excitation), kinematics of the interaction (energy loss, scattering angle) and mean free path value, 
“reaction products” (secondary electrons, recoil cluster of atoms). It is obvious, specifically from the 
latter point, that there is a clear need for data that deal with elementary processes (cross sections, 
branching ratios) and among them, those that concern molecular targets. 

This communication presents recent results we have gained on the subject of ionization and 
fragmentation of isolated DNA, RNA bases and uridine nucleoside induced by 25 – 100 keV proton 
impact. This is organized as follows. We first comment on the Bragg peak and subsequent DNA 
damages. The experimental set-up is then briefly presented, whereas the results are described and 
discussed in some details. Some conclusion and perspectives are finally given. 

2.  Proton transport in matter: the Bragg peak 
In proton therapy, the incident energy ranges from 10 to 250 MeV, the upper choice allowing 
irradiation of the deepest point in a human body, i.e. 30 cm. Let us first consider the ballistic point of 
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view, with the transport of an incident 100 MeV proton beam into liquid water, the prototype of 
human tissue. This beam would experience a severe deceleration within the target medium, and would 
deposit a large dose at a given depth, in a well-defined volume, i.e. the so-called the Bragg peak. This 
can be seen in figure 1, which displays the proton stopping power in liquid water as a function of the 
proton energy. The curve displays a maximum for proton energies of ≈100 keV [3]  that corresponds 
to maximum energy deposition (maximum of the ionization cross section curve). Let us now consider 
the biological point of view. The effects of radiation on biological systems can be directly related to 
alteration of the DNA molecule and single and/or double strand breaks might lead to a cell’s death or 
generate mutation. In order to investigate the damages caused by the proton all over its track, we have 
performed simulations using the Monte Carlo Damage Simulation (MCDS) algorithm described in [4, 
5] . The results are displayed in figure 2 and show that the number of DNA damages, such as single 
strand breaks –SSBs- or double strand breaks –DSBs-, increases with decreasing proton energies. 
Those damages are maximized around 100 keV, with a Linear Energy Transfer –LET- of about 80 
keV per micron. The Relative Biological Effectiveness –RBE- is meanwhile maximised with this latter 
value of the LET as was shown also by Rodriguez et al [6] . 

 
Figure 1. Stopping power in liquid water as a 
function of the proton energy. 

3.  Experimental setup and procedure 
A pulsed 25-100 keV proton beam impinges at right angle on an effusive jet containing DNA or RNA 
bases. The jet is produced by sublimation of commercial powders placed in an oven heated to about 
120°C. 

Charged products, i.e. parent molecules and their fragments, are mass over charge analyzed within 
a time-of-flight (TOF) cell operating in second order space focusing [7] . A pulsed extraction field (1.5 
kV with 10 ns rise time) is triggered once the bunch of projectile ions has reached the collision zone to 
ensure the measurement being independent of the proton beam width. This results in a substantial 
increase of the time-of-flight resolution, and consequently in the mass resolution. After the drift zone, 
the positive fragments are post-accelerated in order to improve their detection efficiency on a 
multichannel plate assembly (MCP), in front of which a negatively biased grid repels the secondary 
electrons towards the assembly. The detection efficiency is therefore greatly enhanced from 60 % 
(open area ratio of the MCP) up to 95 % [8] . Ionic TOF spectra are recorded by means of a Fast 
Comtec 7885 multistop module, with 5 ns resolution. 

4.  Results and discussion 

4.1.  Base fragmentation 
As it can be seen in figure 2, base damage in proton-DNA interaction is the dominant process, 
although not necessary the most dangerous for living organisms. It can also produce mutation by 
simple tautomerization [9] . Some work was previously done on the subject of base fragmentation 
using proton impact [10]  and multicharged ion impact [11, 12] . Within the energy range under 
consideration, the single ionization is an important process, directly accessible in single stop time-of-
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flight spectra, i.e. singly charged fragments correlated to –unobserved- neutral ones. Such spectra are 
displayed on figure 3 for the three pyrimidine targets: cytosine, thymine and uracil. One might note the 
production of the C+, CH+, N+, NH+ and OH+ fragments, though not being dominant. The production 
of mass 28, i.e. the CNH2

+ or CO+ fragments, appears efficient from the three base targets. A common 
feature to the three displayed bases is the emission of the HNCO group [13] . The other fragments, 
particularly noticeable for the uracil and cytosine molecules in the 67 to 69 mass ranges, may 
themselves experience the emission of a carbon monoxide molecule. This gives rise to the sizeable 
ionic yield in the 39 to 43 mass ranges. The very same mechanism was indeed shown by Impotra et al 
[13]  in the thymine case, with a resulting 55 amu charged fragment, also visible in our spectrum.  
All these fragmentation features can be rationalized from the chemical composition and initial 
molecular arrangement of the target bases. Although not visible on figure 3, we also studied the 
correlation between charged fragments, the subject of a forthcoming communication. In brief, it is 
noticeable from the two-charged fragment correlation spectra that ‘stable’ doubly charged parent 
targets are rather scarce, showing the intrinsic fragility of the dicationic structures. 
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Figure 2. DNA damages induced by proton 
at different energies, evaluated by MCDS 
codes [4, 5] . Classification of damages 
according to Nikjoo’s definition: BD bases 
damages, nSSB(+) single strand break, 
DSB(+,++) double strand break. 

4.2.  Nucleoside fragmentation 
The next step towards complexity concerns the study of larger molecules producible in the gas phase. 
From that respect, a nucleoside constitutes an obvious choice that contains a base plus a sugar -an 
element of the DNA strand-. For sublimation’s sake, we chose to study the uridine molecule, a 244 
amu structure, being aware of the risk of molecular decomposition while heating the target sample. 
We can not exclude that our data were affected by this experimental artifact all the more because 
Ptasinska et al [14]  observed it while studying the temperature effect on the molecular dissociation of 
uridine and thymidine molecules. Nonetheless, these authors observed stable structures within a 
certain temperature range, a range that included our oven settings. A similar finding was made by the 
KVI group on the collision induced fragmentation of deoxyribose [15] . Our spectrum is displayed in 
figure 4 and shows unfragmented uridine cations, though in quite small amount. It is divided into two 
mass over charge regions, that corresponding to larger masses being magnified vertically by a factor of 
forty. In this spectral region, the peak at 244 amu is also weak for the ionized parent uridine molecule 
(see points above). Other peaks at 218 and 226 amu are associated with the ablation of a C2H2 and 
H2O molecule, respectively, whereas stronger structures at 133 and 175 amu are connected to the 
sugar subunit of the uridine and (tentatively) to the fragmentation within the uracil subunit, 
respectively. The lower part of the spectrum with mass to charge ratios comprised between 0 and 120 
is –by far- the most intense one. The one stop pure uracil spectrum is superimposed in shaded area for 
comparison purposes as a subunit of the uridine after normalization of the two spectra on mass 112. A 
large part of the uridine fragmentation spectrum can be attributed to the uracil compound. Some extra 
peaks result in molecular rearrangement like that at 19 amu, with the formation of H3O

+. The strongest 
one at 31 amu, i.e. the [HO-CH2]+ fragment, is due to the fragmentation of the sugar subunit. 
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Comparing the respective magnitudes of the lower and larger parts of the spectrum, it follows that the 
emission of an unaltered sugar is unlikely, and therefore that the sugar unit, i.e. the DNA strand 
compound, is radiosensitive.  

 
Figure 3. Mass spectra associated to fragmentation of uracil (top view), cytosine (middle view) and 
thymine (bottom view) induced by 100 keV proton impact. 
 
Alvarado et al [15]  showed that there is a rather complete destruction of the deoxyribose molecule 
under ion impact in the phase gas. Since several characteristics of the dissociation of the uracil 
molecule can be found in that of the uridine, we anticipate that the collision induced dissociation of the 
nucleoside would reflect that of the two parts (base + sugar), according to an ‘additivity’ rule. Using 
this terminology, we make the following point: the weakness of the glycosidic bond is such that any 
other fragmentation of the nucleoside is preceded by that of the base-sugar bond. This point will have–
of course- to be strengthened by studying the sugar alone, a study under progress. 

 

Figure 4. Mass spectrum of collision induced dissociation of uridine. 
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4.3.  Electron emission 
It is now firmly established that the interaction of energetic projectiles with molecular targets causes 
the emission of secondary electrons. Of special interest are the low energy electrons (< 20 eV) that are 
produced in a sizeable amount, well below ionization thresholds. As pointed out by Sanche and co-
workers [16] , those electrons are responsible for substantial yields of single and double strand breaks 
in DNA, via a dissociative attachment mechanism. For larger electron energies, i.e. above ionization 
thresholds, direct fragmentation occurs. The knowledge of the secondary electron’s energy spectrum 
and angular dependence in the electronic emission, is therefore of prime importance for future use as 
input data in track’s simulation (cross section resolved in angle and energy). 

Figure 5(a) displays the Double Differential Cross Sections (DDCS) for the production of 
secondary electrons from the uracil molecule, at the fixed angle of 35° and at proton incident energies 
of 25, 50 and 100 keV. No peaking is seen at low electron energy where the DDCS is found to depend 
weakly on proton energy. In the high energy part of the curve, the DDCS fall off exponentially due to 
the dipole interaction term, according to the Bethe-Born approximation [17, 18] . Also noticeable is 
the absence of any observable discrete structures due to Auger electrons (negligible contribution of the 
cross section). Moreover, we did perform a Classical Trajectory Monte Carlo (CTMC) simulation 
which results are displayed in figure 5(b) for 100 keV protons. For details on the simulation, one shall 
refer to ref [19] . The CTMC computation is in reasonable agreement with the experimental findings at 
35° and while investigating the angular dependence in the electronic emission, the computation shows 
that electrons are emitted preferentially along the projectile direction due to the post-collision 
interaction. 
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Figure 5: (a) Left: DDCS versus electron energy for the uracil molecule. Three 
sets of data are presented for incident proton energies of 100, 50 and 25 keV, in 
solid, dashed and dotted lines, respectively. (b) Right: comparison CTMC 
computation –in filled squares- and experimental data at 100 keV -in solid line-. 

5.  Conclusion and perspectives 
We carried out  experiments on DNA, RNA bases as well as on the uridine molecule in interaction 
with proton projectiles, and focused on the fragmentation and electron emission. We stress the 
weakness of the sugar part in the whole uridine molecule. Since some parts of the fragmentation 
spectrum happen to correspond to the fragmentation of a ‘pure’ uracil molecule, an ‘additivity rule’ 
seems to prevail for the uridine nucleoside. We plan future works on modified ribose molecules in 
which the missing OH radical in pure sugar could be substituted by a hydrogen atom. Indeed, the 
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fragmentation patterns of the complementary part of the uracil within the uridine molecule are not 
known. In addition, molecules used in chemotherapy that enhance the effects of radiation treatment- 
so-called radiosensitizers-, are also of great interest since physical mechanisms are poorly understood 
(see ref [20]  for the action of slow electrons on the bromouridine molecule). Last, it would be very 
fruitful to compare -on an absolute scale- electron versus fragmentation spectra for gas phase 
molecules that differ by only one atom (uracil and halouracil) or those which include platinum atoms 
(cisplatin, carboplatin). The output might be of some relevance in proton therapy based on the 5FU-
Cisplatin protocol [21] . 

References 
[1] Nikjoo, H. et al. 2001 Radiation Research  156 577–83 
[2] Hervé Du Penhoat, M.A.  et al., in Proceedings 17th International Conference on the 
Application of Accelerators in Research and Industry, (Denton, Texas (USA), 2002), ed. Duggan, J.L. 
and Morgan, I.L., AIP, Vol. 680, 2003, p. 52-5. 
[3] Ziegler, J.F. and Biersack, J.P. Internet address: http://www.srim.org/ 
[4] Semenenko, V. and Stewart, R. 2006 Physics in Medicine and Biology  51 1693-706 
[5] Semenenko, V. and Stewart, R. 2004 Radiation Research  161 451-7 
[6] Rodriguez-A, Alpen-El and Powers-Risius-P 1992 Radiation Research  132 184-92 
[7] Eland, J.H.D. 1993 Meas. Sci. Technol.  4 1522-4 
[8] Deconihout, B. et al. 1996 Applied Surface Science  94/5 422-7 
[9] Kurita-N et al. 2005 Chemical Physics Letters  412 285-93 
[10] Coupier, B. et al. 2002 Eur. Phys. J. D  20 459-68 
[11] Schlathölter, T. , Hoekstra, R.  and Morgenstern, R. 2004 Int. J. Mass Spectr.  233 1739 
[12] Manil, B. et al. 2003 NIM B  205 666-7 
[13] Improta, R., Scalmani, G. and Barone, V. 2000 International Journal of Mass Spectrometry  
201 321-36 
[14] Ptasinska, S. et al. 2005 Chemical Physics Letters  409 270-6 
[15] Alvarado, F. et al. 2006 Phys. Chem. Chem. Phys.  8 1922 - 8, 
[16] Boudaïffa, B. et al. 2000 Science  287 1658-60 
[17] Inokuti, M. 1971 Rev. Mod. Physics  43 297-347 
[18] Bethe, H.A 1930 Ann. Phys.  5 325 
[19] Moretto Capelle, P. and Le Padellec, A. 2006 Physical Review A  7406 555,9 
[20] Denifl, S. et al. 2005 European Physical Journal D  35 391-8 
[21] Gohongi, T. et al. 2004 Jpn. J. Clin. Oncol.  35 40-4 
  

Radiation Damage in Biomolecular Systems IOP Publishing
Journal of Physics: Conference Series 101 (2008) 012007 doi:10.1088/1742-6596/101/1/012007

6




