

Université Paul Sabatier – Toulouse III

Electron spectroscopy in H⁺ to dry DNA, RNA collisions in the 25 – 100 keV energy range

By A Le Padellec, P Moretto-Capelle

Target: DNA ...

Emission of secondary electrons

Ionising projectile

Water radiolysis H, HO

Fragmentation, ionisation

Single and double stand breaks

Characteristic times:

Physical 10⁻¹⁵ - 10⁻⁸ s

Chemical $10^{-13} - 10^{-9}$ s

 10^{-3} s - hours

ionisation, excitation

damages due to free radical

chemical repair

...what could we bring to this field?

Experimental technique:

♥Ion accelerator

Production of gas phase biomolecules: sublimation of commercial powders by means of an oven (120-150°C)

Analysis of the fragments by time-of-flight spectroscopy + « multistop » : correlations between fragments

Electron spectroscopy by means of an electrostatic analyser ('cylindrical mirror)

Experimental setup ...

Multicorrelation analysis: event by event

Electronic emission

DOUBLE DIFFERENTIAL CROSS SECTION IN AN ABSOLUTE SCALE (angle and energy)

Normalisation of the cross-sections

Measurements of the number of electrons at 50eV AND of the number of scattered projectiles at 90° AIM :to account for the UNKNOWN projectile density and for its fluctuations

Use of H₃⁺, instead of H⁺, since 2 antagonistic effects on the projectile energy E:

\$\ E^2\$ Rutherford dependence on the elastic scattering cross sections.

\$Large decrease of the ionic current with the energy.

$$N_e = \frac{\partial_2 \sigma_e}{\partial \Omega_e \partial F_e} (35^\circ, 50 eV) [n.\ell.\Delta\Omega] \Delta E_e.\eta_e.N_{proj}$$

 $N_i = \frac{\partial \sigma_i}{\partial \Omega} \cdot [n, \ell, \Delta \Omega]_i, \eta, N_{proj}$ Number of scattered ions

The two combined equations:

$$\frac{\partial^2 \sigma_e}{\partial \Omega_e \partial E_e} = \frac{N_e}{N_i} \left(\frac{\partial \sigma_i}{\partial \Omega_i} \right) \left[\frac{\left[n.\ell.\Delta\Omega \right]}{\left[n.\ell.\Delta\Omega \right]} \cdot \frac{1}{\Delta E_e} \cdot \frac{\eta_i}{\eta_e} \right]$$

Elastic scattering cross sections (10 ⁻²¹ cm ² /sr)			
H (8.33keV) scattered at 90°			
	C	N	O
P.Caffareli's calculations			
ZBL	2.45	3.26	4.32
Bohr	2.57	3.46	4.70
Molière	2.37	3.29	4.26
Pot.PMC	2.76	3.51	4.49
Us	2.72	3.70	4.81

THE RESULTS:

Findings:

- $\begin{tabular}{l} \diamondsuit$ No low energy peak but rather constant and sizeable cross sections (no centrifugal barrier like for the central potential C_{60}),
- No energy dependence E for the proton projectiles,
- At larger energies, exponential decay according to the Bethe-Born approximation dominance of the dipolar interaction term,
- No lines arising from the Auger KLL electrons.

RADAM Groningen 6-9th june 06

PERSPECTIVES

Angular distributions of the electrons, correlation electrons / fragments

Solvated molecules (in collaboration with M et B. Farizon IPN, Lyon)

♦ Step forward to complexity:

Base (adenine)

Nucleotide (hydrated or not)

♦ Radiosensitive molecules (5FU)

Surfaces!?

...and the targets so far !

