Electron collision studies on CN⁺, CN⁻, HCN⁺/HNC⁺ and C₁⁻

by Arnaud Le Padellec

LCAR UMR 5589, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Bât. III R1B4, 31062 Toulouse Cedex 4, France arnaud.lepadellec@irsamc.ups-tlse.fr

CRYogenicRING (Stockholm Sweden) : an heavy ion storage ring.

 $CN^+ + e$

CN^+

-Spectrum first reported by Douglas and Routly (Astrophys. J. 119, 303, (1954)).

-Uncertainty as to the identity of its ground state :

Calculations:

-Wu : ${}^{3}\Pi$ state ground state, lying 0.33 eV below the lowest singlet ${}^{1}\Sigma^{+}$ state (*Chem. Phys. Lett.*, **59**, 457, (1978)).

-Shimakura *et al* : ${}^{1}\Sigma^{+}$ state lower than the triplet state by 0.63 eV (*Chem. Phys. Lett.*, **55**, 221, (1978)).

-Murrell et al : two states degenerated (Mol. Phys., 38, 1755, (1979)).

-Bruna *et al*, Roos *et al* and Hirst have firmly established that the singlet state is the ground state lying at an energy of between 0.07 eV and 0.45 eV below the triplet state (*J. Chem. Phys.*, **72**, 5437, (1980), *Chem. Phys.*, **66**, 197, (1982) and *Mol. Phys.*, **82**, 359, (1994)).

Experiments:

-Reid : the singlet state is the ground state with a separation of 0.12 eV from the triplet state.

-CN⁺ reported in flames

-CN⁺ not reported in interstellar clouds. formed by: $C^+ + NH \rightarrow CN^+ + H$

7.80 x10⁻¹⁰ cm³s⁻¹ (exothermic by 1.9 eV) 1.9 x10⁻¹⁰ cm³s⁻¹.

Question of the abundance of the different reactants : NH a minor component

destroyed by: $CN^+ + H_2 \rightarrow HCN^+ + H$ $CN^+ + H \rightarrow H^+ + CN$ $CN^+ + CO CO^+ + CN$ $1.24 \times 10^{-10} \text{ cm}^3\text{s}^{-1}$ $1.9 \times 10^{-10} \text{ cm}^3\text{s}^{-1}$ $6.3 \times 10^{-10} \text{ cm}^3\text{s}^{-1}$.

 $CH^+ + N \rightarrow CN^+ + H$

The DR process competes with ion-molecule reactions in the interstellar clouds, at least if the electron fraction is sufficiently large. Is it large enough?

Some experimental facts...

-Nitrogen/methane : 9/1 -CN⁺(X¹ Σ ⁺ and ³ Π (0.08eV)) with τ (³ Π) >12s \Rightarrow ¹ Σ ⁺ and ³ Π both populated !

-Vibrational relaxation times of :

38, 58 and 115 ms for the v = 3, v = 2 and v = 1 levels of the $X^1\Sigma^+$ state. 101, 152 and 304 ms for the $a^3\Pi$ state .

 \Rightarrow ¹ Σ^+ and ³ Π , v=0 populated !

Many exothermic channels...

 $CN^{+}(X^{1}\Sigma^{+}, v=0) + e^{-} \rightarrow C(^{3}P) + N(^{4}S) + 6.3 \text{ eV}$

 $\rightarrow C(^{1}\Gamma) + N(^{3}S) + 0.5 eV$ $\rightarrow C(^{1}D) + N(^{4}S) + 5.0 eV$ $\rightarrow C(^{3}P) + N(^{2}D) + 3.9 eV$ $\rightarrow C(^{1}S) + N(^{4}S) + 3.6 eV$ $\rightarrow C(^{3}P) + N(^{2}P) + 2.7 eV$ $\rightarrow C(^{1}D) + N(^{2}D) + 2.6 eV$ $\rightarrow C(^{1}D) + N(^{2}D) + 2.6 eV$ $\rightarrow C(^{5}S) + N(^{4}S) + 2.1 eV$ $\rightarrow C(^{1}D) + N(^{2}P) + 1.4 eV$ $\rightarrow C(^{1}S) + N(^{2}D) + 1.2 eV$ $\rightarrow C(^{1}S) + N(^{2}P) + 0.0 eV$

+10 more limits coming from $CN^+(a^3\Pi, v=0) + e^-$

BRANCHING FRACTION DETERMINATION

$$P(D) = \frac{1}{D_{L+1/2} - D_{L-1/2}} \left(\cos^{-1} \left(\min \left(1, \frac{D}{D_{L+1/2}} \right) \right) - \cos^{-1} \left(\min \left(1, \frac{D}{D_{L-1/2}} \right) \right) \right)$$

DR meeting Chicago August 26-30 2001

 $C(^{3}P)+N(^{4}S)$ <1.8 %</th> $C(^{1}D)+N(^{4}S)$ 3.8 % $C(^{3}P)+N(^{2}D)/C(^{1}S)+N(^{4}S)$ 14.2 % $C(^{3}P)+N(^{2}P)/C(^{1}D)+N(^{2}D)$ 56.1 % $C(^{1}D)+N(^{2}P)/C(^{1}S)+N(^{2}D)$ 25.5 % $C(^{5}S)+N(^{4}S)$ and $C(^{1}S)+N(^{2}P)$ <1-1.4 %</td>

Branchings at 0 eV...

•D² Π , E² Σ ⁺ and ² Π (3) do not intersect the ionic curves.

 \Rightarrow not suitable drive the DR via the direct process.

 \Rightarrow the limits correlating to these states are not populated.

•CN⁺(X¹ Σ ⁺) : best Franck-Condon overlap with ² Σ ⁺(5).

•CN⁺($a^{3}\Pi$) : best overlap with ${}^{2}\Sigma^{+}(6)$ and ${}^{2}\Pi(6)$.

 \Rightarrow C(³P)+N(²P), C(¹D)+N(²D), C(¹D)+N(²P) and C(¹S)+N(²D) limits represent altogether 81.6 % of the dissociating flux.

•C(¹S)+N(²P) not significantly populated. \Rightarrow the corresponding dissociative state converging to this asymptotic limit and displaying a favorable curve crossing near the v = 0 of the ion would have to be extremely shallow!

 $CN^- + e$

CN⁻

-Structure mainly known from theoretical works.

•Taylor *et al* : construction of the ${}^{1}\Sigma^{+}$ ground state potential by using calculations based on configuration interaction and coupled-pair methods

(J. Chem. Phys., **70(10)**, 4481 (1979)) \Rightarrow Reliable ro-vibrational data.

Ha and Zumofen : spectroscopic constants and potential curves for both the ¹Σ⁺ ground state and the ¹Π and ³Π excited states performing CI calculations
 (Molec. Phys., 40(2), 445 (1980)).

-Little known about the dynamical properties

Pulm *et al* : photoionisation study (Chem. Phys., **92**, 457 (1985)).

Matti-Maricq *et al* : vibrational product state distribution from reactions of CN⁻ with hydrogen halides (Cl, Br and I) and hydrogen atoms
 (J. Chem. Phys., 74, 6154 (1981)).

PRACTICAL "APPLICATIONS"

-Readily forms robust complexes with transition metal ions ("Advanced Inorganic Chemistry", Wiley-Interscience, New York, (1972)).
-Can be used to dope alkali halide crystals ("Molecular spectroscopy", Vol 1, Chemical Society, London, (1972)).

Some experimental facts...

-Property : high degree of stability against detachment -CN⁻ produced in a cesium sputter ion source (boron nitride cathode) -Lifetime $\tau(a^{3}\Pi)=21 \text{ ms } \Rightarrow \text{ only CN}(X^{1}\Sigma^{+}) \text{ populated!}$ -Vibrational relaxation times of : 700, 930, 1390 and 2790 ms for the levels v = 4, 3, 2 and 1. $\Rightarrow X^{1}\Sigma^{+}, v=0 \text{ and } 1 \text{ populated!}$

Investigated channels

$CN^- + e \rightarrow CN + 2e$	(a)
\rightarrow C ⁻ + N + e	(b)
\rightarrow C + N + 2e	(c)
\rightarrow C + N ⁺ + 3e	(d)
$\rightarrow C^+ + N + 3e$	(e)
$\rightarrow CN^+ + 3e$	(f)
\rightarrow C ⁻ + N ⁺ + 2e	(g)
\rightarrow C ⁺ + N ⁺ + 4e	(h)

We recorded the neutral fragments \Rightarrow (a) and (c) could not be distinguished \Rightarrow use of a grid in front of the Surface Barrier Detector.

EXPERIMENTAL FINDINGS

At 60 eV :

91(\pm 4) % branch into the pure detachment channel CN+2e 8(\pm 4) % branch into the dissociation channel C⁻ + N.

The flux into all other open channels represents less than 1 % !

Figure \Rightarrow PURE DETACHMENT \Rightarrow Onset at a threshold energy of about 7 eV (fit to our experimental data at medium energy, using a semi-classical formalism developed by Andersen *et al*). \Rightarrow Threshold = binding energy of the anion (3.8 eV) + finite contribution due to the Coulomb repulsion.

•C⁻(⁴S) + N(⁴S) : 4 states do correlate ($^{1}\Sigma^{+}$ ground state in green). •C⁻(²D) + N(⁴S) and C⁻(²D) + N(²D): 36

states do correlate (${}^{3}\Pi$ and ${}^{1}\Pi$ states in green).

 \Rightarrow among these 40 states, some purely repulsive might contribute to the 8(±4) % that branch into the C⁻ + N channels.

•73 states correlate to the 10 neutral limits

•Lavendy *et al* : 13 curves of Σ^+ and Π symmetries displayed in blue

Nine of them are bound states!

•States of Σ^{-} , Δ , Φ and Γ symmetries unknown.

A majority could be associated with bound states !

 \Rightarrow the pure detachment into CN + 2e is overwhelmingly dominant!

⇒the upper ${}^{2}\Sigma^{+}$ (5, 6) and ${}^{2}\Pi$ (6) states could very well contribute to the very weak dissociation C+N channels.

MEIBE (Western-Ontario Canada) : a single pass merged beam setup

$HCN^+/HNC^+ + e$

- interchange reactions with atoms/molecules
- (ex : J. Chem. Phys., 109, 1743 (1998) or J. Phys. Chem., 99, 12204 (1995)).

-Interstellar chemistry considered by some authors.

HNC⁺: less documented

 \Rightarrow Ground state : ${}^{2}\Sigma^{+}$

-Vibrational structures

•NH stretch3365.0 cm⁻¹•Bend577.6 cm⁻¹•NC stretch2195.2 cm⁻¹

(J. Chem. Phys., 97, 1664, (1992)).

(J. Chem. Phys., 97, 1664, (1992)).

(J. Chem. Phys., 97, 1664, (1992)).

...little amount of data for the A state...

Some experimental facts... -Interest in the isomerization chemistry HNC⁺: more stable than HCN⁺ (0.98eV). -Two different gas mixtures within the source $3.35\% N_2 - 8.35\% CH_4 - 83.3\% CO_2$ ⇒HNC⁺ : 96.2%. \Rightarrow HCN⁺ : 3.8%. ♦90% N_2 - 10% CH_4 (efficient isomerization reaction of HCN⁺/HNC⁺ with CH₄) \Rightarrow HNC⁺ : 87.5%. \Rightarrow HCN⁺ : 12.5%. -Internal excitation of the target ions ♦ HCN⁺: X²Π, A²Σ⁺ (radiative lifetime : 3ms) and B²Σ⁺ (0.40 and 5.25 eV) above X state). **♦** HNC⁺: $X^2\Sigma^+$, $A^2\Pi$ and $B^2\Sigma^+$ (2.13 and 10.63 eV). DR meeting Chicago August 26-30 2001

 $8.35\% N_2 - 8.35\% CH_4 - 83.3\% CO_2$

HCN⁺ DR process considerably more efficient than that for HNC⁺!

POTENTIAL ENERGY SURFACES IN THE QUASI-DIABATIC REPRESENTATION (see also D Talbi)

Several curve crossings between repulsive states (of different symmetries) and Rydberg states ⇒"Indirect" process.

Motivations

-Fundamental

Collisional properties of the system $C_4^- + e$ (detachment/dissociation) and study of the dianions C_4^{-2-} (Structures, energetics...).

-More applied...

*Possible astrophysical significance of the C_n species as contributors to the formation of the long-chain cyanopolyynes, carbon dust, PAH's and DIB's.

 $Involvement of large C_n$ clusters in the nucleation of carbon particles and formation of soot in hydro-carbon flames.

What is known about C_4^-

 $C_4^{-}(X^2\Pi_g)$ ground state

-Schmatz *et al* (Int J Mass Spectrom Ion Proc, <u>149/150</u>, 621, (1995))

 \rightarrow symmetric stretch vibrational frequencies predicted to be 2082.7 and 911.3 cm⁻¹ for v1 and v2, respectively (Ab-initio)

-Maier's group (JCP, <u>103</u>, 48, (1995))

→ several electronic transitions $C^2\Pi_u - X^2\Pi_g$, $A^2\Sigma^+_g - X^2\Pi_g$, $B^2\Sigma^+_u - X^2\Pi_g$, (2)² $\Pi_u - X^2\Pi_g$ and (3)² $\Pi_u - X^2\Pi$ (Experiments in matrix)

 \rightarrow v1 and v2 determined + symmetric bending mode v4 of 396 cm⁻¹

-Zhao *et al* (JCP, <u>105</u>, 2575, (1996) – Experiments in gas phase)

 \rightarrow two photon photodetachment techniques: for the C² Π_{u} - X² Π_{g} transition, (JPCP, <u>228</u>, 293, (1998) – Experiments in gas phase)

→ vibrationless origins of the $(2)^2\Pi_u - X^2\Pi_g$ and $(3)^2\Pi_u - X^2\Pi$ bands differ only by 0.3 and 0.5 % to that was found in the matrix work

-Szczepanski *et al* (JPCA, <u>101</u>, 8788, (1997))

 \rightarrow v3 antisymmetric stretch

Various open channels over the energy range...

 C_4 e

 C_4 2e 3.9 eV C_2 C_2 e 6.2 eV C_3 C e 6.4 eV C_3 C e 7.2 eV C_3 C 2e 8.4 eV $2C_2$ 2e 9.5 eV C_2 C C 10.9 eV $C_2 \ 2C \ e \ 12.1 \ eV$ C_{2} 2C 12.9 eV C_2 C C e 14.1 eV $C_2 \ 2C \ 2e \ 15.4 \ eV$ $2C \ 2C \ 18.8 \ eV$

Detection of the neutral fragments: MCA spectrum

Within one channel, how to get the branching fractions?

Grid inserted in front of the SBD detector

Relative energy (eV)

Apparent threshold : at ~ 6eV Rhombus ?
Photothreshold at 2.2 eV + contribution due to the Coulomb repulsion
Cross-section magnitude on top: ~1-2 x10⁻¹⁶ cm²
Detachment dominant over dissociation (~95%)
Near threshold resonance due to

the dianion (0.7fs)

Monitoring of the produced ion-pair fragments in dianionic decay: multi-coincidence time-of-flight techniques

Mathur et al CPL, 277, 558, (1997).

Conclusion

Results on

 $> CN^+ + e$

-CROSS SECTIONS (Diatomic) +BRANCHING RATIOS (Manifold of exothermic channels)

$> CN^- + e$

-THRESHOLD, DETACHMENT OVER DISSOCIATION (Grid technique)

> HCN⁺/HNC⁺ + e

-IZOMERISATION CHEMISTRY, CROSS SECTIONS (Large differences between the two isomers : rationalized)

 $> C_4^- + e$ -THRESHOLD, DETACHMENT OVER DISSOCIATION and DIANION

SPECIAL THANKS !

M Larsson and his group (Stockholm University)
 D Hanstorp and his group (Chalmers University)
 JBA Mitchell (University of Western Ontario and Rennes 1)