Å. Larson¹, A. Le Padellec¹, C. Strömholm¹, <u>J. Semaniak¹</u>, M. Larsson², S. Rosén², R. Peverall³, H. Danared⁴, N. Djuric⁵, G.H. Dunn⁵, and S. Datz⁶

¹Department of Physics I, Royal Institute of Technology, S-10044, Stockholm, Sweden ²Department of Physics, Stockholm University, P.O. Box 6730, S-11385, Stockholm, Sweden

³FOM Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands

⁴Manne Siegbahn Laboratory, Stockholm University, S-10405 Stockholm, Sweden

⁵JILA, University of Colorado, Campus Box 440, Boulder, CO 80309-0390

⁶Physics Division, Oak Ridge National Laboratory, Oak Ridge, USA

 CH_5^+ is formed in dense interstellar clouds¹ and is expected to appear in ionospheres of jovian planets². Dissociative recombination of CH_5^+ directly effects the abundances of ethane, ethylene and methane therein. The absolute DR cross section and the neutral product branching fractions are necessary in the understanding of molecular processes in these media. Both quantities have been measured in the heavy-ion storage ring at the Manne Siegbahn Laboratory at Stockholm University. The cross section has been found to be inversely proportional to the collision energy below 0.1 eV. It can be interpreted as a dominance of a direct DR mechanism. A pronounced structure found at 9 eV suggests a resonant electron capture to Rydberg states converging to excited ionic states. The thermal rate coefficient 3 10⁻⁷ cm³s⁻¹ at the room temperature is at least twice lower than last FALP results, generally accepted by present models of dense interstellar clouds. An important finding is that CH_3+H+H and CH_2+H_2+H dominate over other dissociative channels at collision energies between 0 eV and 0.2 eV, with branching ratios of about 0.7 and 0.2. This result has never been predicted theoretically³.

<u>References</u>

- 1. A. Sternber and A. Dalgarno, Astrophys. J. Supp. 90, 565 (1995)
- 2. Y. H. Kim and J. L. Fox, Icarus 112, 310 (1994)
- 3. F. R. Bates, J. Phys. B 24, 3267 (1991)