DISSOCIATIVE RECOMBINATION OF $\rm CH_5^{+}\!\!:$ TOTAL CROSS SECTIONS AND BRANCHING FRACTIONS

S. Datz¹, S. Rosén², C. Strömholm³, J. Semaniak³, A Larson³, A. Le Padellec³, N. Djuric⁴, R. Peverall⁵, H. Danared⁶ and M. Larsson $²$ </sup>

¹Physics Division Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6377 USA

 $2D^2$ Department of Physics, Stockholm University, P.O. Box 6730, S-11385, Stockholm, Sweden

³Department of physics I, Royal Inst. of technology (KTH), S-100 44, Stockholm, Sweden

4 JILA, University of Colorado, Campus box 440, Boulder, CO 80309-0390

5 FOM Inst. for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands ⁶Manne Siegbahn Laboratory at Stockholm University, S-104 05, Stockholm, Sweden

 $CH₅⁺$ is formed in dense interstellar clouds by the radiative association process $CH_3^+ + H_2 \rightarrow CH_5^+ +$ hυ when the electron abundance is small enough to prevent dissociative recombination (DR) of CH_3^{\dagger} from being effective. DR of $CH₅⁺$ can occur by as many as nine paths, but below 0.2 eV collision energy, only five are energetically possible.

The branching ratios are important since they could have a significant effect on the abundances of $CH₂$, $CH₃$ and $CH₄$.

We have used the CRYRING heavy-ion storage ring at the Manne Siegbahn Laboratory at Stockholm University in Sweden to measure total cross sections and branching in CH_5^+ . The CH_5^+ is injected into the ring accelerated to an energy of 5.6 MeV. In one leg of the ring, the ion beam is merged with a collinear electron beam which acts as a "cooler" and as an electron target. The beam is stored to permit vibrational relaxation. The relative energy is varied from ≤ 0.001 to 40 eV. Neutral (DR) products exit the ring and are recorded on a surface barrier detector as a 5-6 MeV pulse. The total DR cross sections are shown in Fig. 1. The partial cross sections are determined by inserting a perforated absorbing sheet (50-µ-thick, 50- μ -holes -30% transparent) in front of the detector¹. The DR fragments have independent probabilities of passing through a hole in the barrier and the signal is broken up into a series of pulse heights depending on how many hydrogen atoms have passed through holes in coincidence with a carbon atom (Fig. 2). Analysis of these spectra yields the branching ratios indicated in the table above. These results are contrary to the expectations of Bates and $Herbst²$ who anticipated the major contributions from paths $δ$ and $β$, but not from α and with Fox and Yelle³ who expected the dominant mechanism would be α with some contribution from channel δ.

Fig. 1. Values (preliminary) of total DR cross section $CH₅⁺$ versus collision energy.

Fig. 2. Pulse height spectrum for DR of CH_5^+ after passing through the screen. From right to left, the peaks represent $C(H_5)$, $C(H_4)$, $C(H_3)$, $C(H_2)$, $C(H)$ and C. The spectrum is taken at 1 meV relative energy and the last peak is not energetically possible in DR, it arises from collisions with rest gas.

SD acknowledges support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences under contract No. DE-AC05- 96OR22464 with Lockheed Martin Energy Research Corporation.

^{1.} S. Datz et al Phys. Rev. A 52, 1 (1995).

^{2.} D.R. Bates and E. Herbst, "Rate Coefficients in Astrochemistry", 1988

^{3.} J.L Fox and R.V. Yelle Proc Am. Astro. Soc. 23, 53 (1991).