Excitation and fragmentation of C_nN molecules; Fundamental aspects and application to astrochemistry.

<u>T. Mahajan</u>^{1*}, K. Béroff¹, M. Chabot², T. Pino¹, T. K. C. Le¹, M. Bonnin¹, G. Martinet², S. Bouneau², L. Perrot², A. Le Padellac³, F. Geslin², N. De Sereville², F. Hammache², T. Launoy⁴.

¹Institut des Sciences Moléculaires d'Orsay (France). ²Institut de Physique Nucléaire d'Orsay (France). ³Centre d'Etude Spatiale des Rayonnements, Toulouse (France). ⁴Chimie Quantique et photophysique, Université libre de Bruxelles (Belgique).

*thejus.mahajan@u-psud.fr

Amongst the ~180 molecules detected in the interstellar medium (ISM), carbon-based molecules are dominant, associating carbon atoms with hydrogen, nitrogen or oxygen ones. C_nN molecules, on the neutral but also on the anionic forms, have been detected in ISM [1] and have also been found in planetary atmospheres such as Titan, the largest satellite of Saturn [2].

In the astrochemistry field, dedicated to the study of the molecular composition and evolution in astrophysical environments, a strong demand emerges for molecular fragmentation data to be included in databases such as the recent KIDA (Kinetic Database for Astrochemistry) [3]. Using the dedicated AGAT setup nearby Tandem-Alto accelerator in Orsay, the AGAT collaboration was able to measure fragmentation branching ratios (BR's) for numerous carbon clusters and hydrocarbon molecules of various sizes and charges [4].

We recently began measurements with C_nN^+ molecules. Apart from fragmentation BR's, collisional cross sections for electronic excitation, ionization and charge transfer in 2.25 a.u C_nN^+ - He collisions have also been measured which are of fundamental interest. I will present first results obtained with the C_nN^+ projectiles for collisional cross sections and associated fragmentation BRs and will compare to data obtained previously with pure carbon clusters.

References

[1] M. Agundez and V. Wakelam Chem. Rev 113 (2013) 8710.

- [2] V. Vuitton et al. Planetary and Space Science 57 (2009) 1558.
- [3] http://kida.obs.u-bordeaux1.fr/
- [4] M. Chabot et al. ApJ (2013) 771:90 and references therein.