EXPERIMENTAL STUDIES OF DISSOCIATIVE RECOMBINATION OF H₃⁺, KrH⁺ and XeH⁺

A. Le Padellec , S. Laubé , C. Rebrion - Rowe, O. Sidko , J.-C. Gomet and B.R. Rowe

Département de Physique Atomique et Moléculaire, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France

The exact value of the rate coefficient α for dissociative recombination of H_3^+ ground state ions has been and is still a subject of controversy ^{(1),(2),(3)}. Following our previous work in helium afterglow, we have measured using a FALP-MS apparatus $\alpha(H_3^+)$, $\alpha(KrH^+)$ and $\alpha(XeH^+)$ in an argon-helium buffer. Argon flows through the discharge (Gate G₁: $Q_{Ar} = 30 \ l \ min^{-1} atm$) and the electrons are thermalized downstream by large helium injection (G₂: $Q_{He} = 5 \ l \ min^{-1} atm$). It is therefore possible to obtain at low pressure ($P \sim 0.5 \ Torr$) a plasma where Ar^+ is the dominant ion. Addition of hydrogen alone results in H_3^+ production through the following reactions $Ar^+ + H_2 \rightarrow ArH^+ + H$ and $ArH^+ + H_2 \rightarrow H_3^+ + Ar$. The latter reaction is known to form H_3^+ up to v= 2. In this case $\alpha(H_3^+)$ has been determined to be $1.0 \times 10^{-7} \ cm^3 \ s^{-1}$.

When Kr or Xe (Gate G₃) is injected in excess of H₂ (Gate G₄), the plasma is dominated by KrH⁺ or XeH⁺, these two gazes having proton affinities larger than H₂. The measured values of the rate coefficients for these ions are respectively $\alpha(KrH^+) < 1.0 \times 10^{-8} \text{ cm}^3 \text{s}^{-1}$ and $\alpha(XeH^+) = 1.1 \times 10^{-7} \text{ cm}^3 \text{s}^{-1}$, in good agreement with the previous work of Geoghegan ⁽⁴⁾ and co-workers only for KrH⁺.

By adding a large quantity of H₂ further downstream (Gate G₅) in a flowing afterglow plasma dominated by KrH⁺, it is possible to obtain H_3^+ as a dominant ion through the reaction $KrH^+ + H_2 \rightarrow H_3^+ + Kr$ with $[H_2] >> [Kr]$ due to the very close proton affinity of Kr and H₂. Since KrH⁺ does not recombine, this can be done with a fairly high density. It is therefore possible to measure $\alpha(H_3^+)$ for ions that are almost certainly in their ground state $\alpha(H_3^+) = 0.8 \times 10^{-7} \text{ cm}^3 \text{s}^{-1}$, see figure 2.

Considering the uncertainties in the various experiments, this result is, in our opinion, still in agreement with the measurements of Larsson and co-workers ⁽⁵⁾. However it can be taken as showing that the α value for ground state is slightly lower than for excited state.

Fig.1: MS-FALP experimental set-up

Fig. 2: Typical plot yielding $\alpha = 0.8 \ 10^{-7} \ cm^3 s^{-1}$

- A. Canosa , J.-C. Gomet , B.R. Rowe , J.B.A. Mitchell and J.-L. Queffelec, J.Chem.Phys. 97(2), 1028, (1992).
- 2. D. Smith and P. Spanel, Inter.J.Mass Spectrom.Ion Process. 129, 163, (1993).
- 3. T. Gougousi, R. Johnsen and M.F. Golde, to be published in Int. J. Mass Spectom. Ion Process.
- 4. M. Geoghegan, N.G. Adams and D. Smith, J.Phys.B 24, 2589, (1991).
- 5. G. Sundström, J.R. Mowat, H. Danared, S. Datz, L. Broström, A. Filevich, A. Källberg, S. Mannervick, K.G. Rensfelt, P. Sigray, M. Af Ugglas and M. Larsson, Science, **263**, 785, (1994).